Смекни!
smekni.com

Оптические характеристики телескопа (стр. 2 из 3)

Теория и опыт показали, что влияние хроматической аберрации можно уменьшить, если использовать в качестве объектива линзу с очень большим фокусным расстоянием. Гевелий начал с объективов с 20-метровым фокусом, а самый длинный его телескоп имел фокусное расстояние около 50 м. Объектив соединялся с окуляром четырьмя деревянными планками, в которые было вставлено множество диафрагм, делавших конструкцию более жёсткой и защищавших окуляр от постороннего света. Всё это подвешивалось с помощью системы канатов на высоком столбе; наводился телескоп на нужную точку неба с помощью нескольких человек, по-видимому отставных матросов, знакомых с обслуживанием подвижных судовых снастей.

Линзы Гевелий сам не изготовлял, а покупал их у одного варшавского мастера. Они были настолько совершенны, что при спокойной атмосфере удавалось увидеть дифракционные изображения звёзд. Дело в том, что даже самый совершенный объектив не может построить изображение звезды в виде точки. Из-за волнового характера света в телескоп с хорошей оптикой звезда выглядит как небольшой диск, окружённый светлыми кольцами убывающей яркости. Такое изображение называется дифракционным. Если оптика телескопа несовершенна или атмосфера неспокойна, дифракционной картины уже не видно: звезда представляется наблюдателю пятнышком, размер которого больше дифракционного. Такое изображение называют атмосферным диском.

Нидерландские астрономы братья Христиан и Константин Гюйгенсы строили Галилеевы телескопы по-своему. Объектив, укреплённый на шаровом шарнире, помещался на столбе и мог с помощью особого приспособления устанавливаться на нужной высоте. Оптическая ось объектива направлялась на исследуемое светило наблюдателем, поворачивавшим его с помощью прочного шнурка. Окуляр монтировался на треноге.

25 марта 1655 г. Христиан Гюйгенс открыл Титан - самый яркий спутник Сатурна, а также разглядел на диске планеты тень колец и начал изучение самих колец, хотя в то время они наблюдались с ребра. "В 1656 году, - писал он, - мне удалось рассмотреть в телескоп среднюю звезду Меча Ориона. Вместо одной я увидел двенадцать, три из них почти что касались друг друга, а четыре других светили через туманность, так что пространство вокруг них казалось значительно более ярким, чем остальная часть неба, казавшаяся совершенно чёрной. Как будто наблюдалось отверстие в небе, через которое видна более яркая область".

Гюйгенс полировал объективы сам, а его "воздушная труба" оказалась шагом вперёд по сравнению с "длинными трубами" Гевелия. Придуманный им окуляр просто изготовить, и он используется до сих пор.

Высокий уровень мастерства, заложенный Галилеем, способствовал расцвету итальянской оптической школы. В конце XVII в. строилась Парижская обсерватория; она была оснащена несколькими телескопами системы Галилея. С помощью двух таких инструментов и 40-метрового телескопа первый её директор, итальянец Джованни Доменико Кассини, открыл четыре новых спутника Сатурна и изучал вращение Солнца.

Гениальный немецкий астроном Иоганн Кеплер получил телескоп Галилея на короткое время от одного из друзей. Он мгновенно сообразил, какие преимущества приобретёт этот прибор, если заменить рассеивающую линзу окуляра на собирающую. Кеплеров телескоп, дающий в отличие от Галилеева перевёрнутое изображение, применяется повсеместно и по сей день.

Рефлекторы Ньютона-Гершеля

Основной недостаток Галилеевых труб - хроматическую аберрацию - взялся устранить Исаак Ньютон. Сначала в качестве объектива он хотел использовать две линзы - положительную и отрицательную, которые имели бы разную оптическую силу, но противоположную по знаку хроматическую аберрацию. Ньютон перепробовал несколько вариантов и пришёл к ошибочному выводу, что создание ахроматического линзового объектива невозможно. (Правда, современники свидетельствуют, что эти опыты он проводил в большой спешке.)

Тогда Ньютон решил покончить с этой проблемой радикально. Он знал, что ахроматическое изображение удалённых предметов строит на своей оси вогнутое зеркало, изготовленное в виде параболоида вращения. Попытки сконструировать отражательные телескопы в то время уже делались, но успехом они не увенчались. Причина была в том, что в применявшейся до Ньютона двухзеркальной схеме геометрические характеристики обоих зеркал должны быть строго согласованы. А этого оптикам как раз и не удавалось добиться.

Телескопы, у которых роль объектива выполняет зеркало, называются рефлекторами (от лат. reflectere - "отражать") в отличие от телескопов с линзовыми объективами -рефракторов (т лат. refractus - "преломлённый"). Ньютон сделал свой первый рефлектор с одним вогнутым зеркалом. Другое небольшое плоское зеркало направляло построенное изображение вбок, где наблюдатель рассматривал его в окуляр. Этот инструмент учёный изготовил собственноручно в 1668 г. Длина телескопа составляла около 15 см. "Сравнивая его с хорошей Галилеевой трубой длиной в 120 см, - писал Ньютон, - я мог читать на большем расстоянии с помощью моего телескопа, хотя изображение в нём было менее ярким".

Ньютон не только отполировал зеркало первого рефлектора, но и разработал рецепт так называемой зеркальной бронзы, из которой он отлил заготовку зеркала. В обычную бронзу (сплав меди и олова) он добавил некоторое количество мышьяка: это улучшило отражение света; к тому же поверхность легче и лучше полировалась. В 1672 г. француз, преподаватель провинциального лицея (по другим данным, архитектор) Кассегрен предложил конфигурацию двухзеркальной системы, первое зеркало в которой было параболическим, второе же имело форму выпуклого гиперболоида вращения и располагалось соосно перед фокусом первого. Эта конфигурация очень удобна и сейчас широко применяется, только главное зеркало стало гиперболическим. Но в то время изготовить кассегреновский телескоп так и не смогли из-за трудностей, связанных с достижением нужной формы зеркала.

Компактные, лёгкие в обращении высококачественные рефлекторы с металлическими зеркалами к середине XVIII в. вытеснили "длинные трубы", обогатив астрономию многими открытиями.

В то время на английский престол была призвана Ганноверская династия; к новому королю устремились его соотечественники - немцы. Одним из них был Уильям Гершель, музыкант и одновременно талантливый астроном.

Убедившись в том, как трудно обращаться с Галилеевыми трубами, Гершель перешёл к рефлекторам. Он сам отливал заготовки из зеркальной бронзы, сам шлифовал и полировал их; его оптический станок сохранился до наших дней. В работе ему помогали брат Александр и сестра Каролина; она вспоминала, что весь их дом, включая спальню, был превращён в мастерскую. С помощью одного из своих телескопов Гершель открыл в 1778 г. седьмую планету Солнечной системы, названную впоследствии Ураном.

Гершель непрерывно строил всё новые и новые рефлекторы. Король покровительствовал ему и дал деньги на строительство огромного рефлектора диаметром 120 см с трубой длиной 12м. После многолетних усилий телескоп был закончен. Однако работать на нём оказалось трудно, а по своим качествам он не превзошёл меньшие телескопы столь значительно, как предполагал Гершель. Так родилась первая заповедь телескопостроителей: "Не делайте больших скачков".

Однолинзовые длинные рефракторы достигли в XVII в. мыслимых пределов совершенства; астрономы научились отбирать для их объективов высококачественные заготовки стекла, точно обрабатывать и монтировать их. Развивалась теория прохождения света через оптические детали (Декарт, Гюйгенс).

Без преувеличения можно сказать, что создание современных крупных рефлекторов прочно стоит на заложенном в XVII-XVIII вв. фундаменте. Модифицированная конфигурация Кассегрена осуществляется во всех без исключения современных ночных телескопах. Искусство обращения с металлическими зеркалами, допустимый прогиб которых при любом положении телескопа не должен превышать малых долей микрометра, привело в конце концов к созданию высокосовершенных управляемых ЭВМ оправ зеркал телескопов-гигантов. Оптические схемы некоторых окуляров того времени используются до сих пор. Наконец, именно тогда появились зачатки научных методов исследования формы поверхностей оптических элементов, которые в наши дни выкристаллизовались в законченную научную дисциплину - технологию изготовления крупной оптики.

Уравновешивание телескопа

Для обеспечения нормальной работы часового механизма и удобства в работе при наведении телескопа на объект при отпущенных зажимах, телескоп должен быть полностью уравновешен в своих подвижных частях и находиться в безразличном равновесии. Для этого центр тяжести телескопа и всех дополнительных приспособлений должен находиться в месте пересечения полярной оси и оси склонения.

Достигается это навешиванием дополнительных грузов или их перемещением по оси противовеса и вдоль трубы телескопа. При смене навесного оборудования зачастую наблюдателю самому необходимо выполнять уравновешивание.

Телескоп на экваториальной монтировке необходимо выверить в четырех положениях:

- в двух положениях для проверки равновесия вокруг оси склонения в меридиане (горизонтальном и вертикальном),

- и в двух положениях для проверки равновесия вокруг полярной оси (в меридиане и в первом вертикале).

Для уравновешивания телескопа вокруг оси склонения ставим телескоп в горизонтальное положение (в меридиане). Снимая или добавляя грузы к окулярному или объективному концам, добиваемся того, чтобы телескоп был уравновешен в этом положении. Тогда центр тяжести трубы телескопа находится на вертикальной линии, проходящей через центр оси склонения. В общем случае эти две точки по вертикали одна с другой не совпадут.