Он ведет через известный принцип наименьшего действия в его квантовой формулировке, найденной Фейнманом: в природе наблюдаются все те и только те траектории движения тел или систем, которые соответствуют экстремальным значениям функционала Действия. Если эти траектории " минимальные (как в механике), то поведение системы качественно не изменяется. Если же траектория " экстремаль ненулевого индекса (то есть, седло или максимум на графике Действия), то движение по ней вызывает фазовый переход в системе " будь то тающий лед, осенний лес или российское общество 1917 года.
Согласно топологической теории Морса (созданной в 1930 году), совокупность всех экстремальных траекторий задает клеточное разбиение гладкого многообразия с двумя краями, или БОРДИЗМА, заменяющего в новой физике классическое понятие мировой линии. В 1950-е годы Рене Том создал теорию бордизмов любой размерности. После этого топологи и физики начали изучать бордизмы произвольных фигур, особенно групп Ли " и к 1970 году алгебро-геометрический аппарат общей теории эволюции был, в основном, создан (хотя биологи и социологи не сразу заметили это). Вспомним, как тремя веками раньше Ньютон создал на основе дифференциальных уравнений единую математическую теорию механических процессов, не вызывающих эволюции. Осмысление и совершенствование механики Ньютона затянулось на полтораста лет - до эпохи Лагранжа и Лапласа, которые сумели объяснить все, кроме происхождения Солнечной системы.
Сейчас Эрлангенской программе Кляйна исполнилось 125 лет. Видно, как 25 лет назад математики завершили ее понимание, создав топологическую теорию управления симметриями природных систем. После 1967 года началось проникновение этой теории в физику элементарных частиц и вакуума. Сейчас, поколением позже, пора начинать экспорт новой модели физического мира в умы школьников! Первые опыты этого рода в ведущих физматшколах России прошли успешно. Старшеклассники быстро привыкают к тому, что программа Кляйна охватывает всю природу " включая биоэволюцию, социальные катаклизмы и деятельность людей-творцов, чьи биографии изображаются траекториями максимального действия. Конечно, вычислительные трудности на этом пути огромны " но ведь и школьный курс математического анализа включает далеко не все, что умел делать Ньютон!
Нужно крепить наметившуюся связь, наводя все новые мосты между школьными курсами математики и разных ветвей естествознания " включая историю науки, неразделимо сплетенную с историей человечества. Чем больше учителей разного профиля увлечется этой мечтой, тем более зрелым и уверенным вступит в 21 век нынешнее поколение юных россиян. Феликс Кляйн, Давид Гильберт и Николай Лузин решали сходную задачу в начале 20 века. Опыт развития российской науки в нашем столетии показал, что эти труды не пропали даром. Очень хочется, чтобы через полвека или через век потомки сказали нечто подобное о наших усилиях...