Метеорологическая аппаратура спутника состоит в основном из телевизионной (ТВ), инфракрасной (ИК) и актинометрической (АК) систем. Она может работать циклами различной продолжительности и включается по заданной программе или по командам с Земли. ТВ и ИК снимки позволяют выявить особенности структуры полей облачности, не доступные наблюдениям с наземной сети станций, и сделать выводы не только о положении, но и об эволюции соответствующих синоптических объектов и воздушных масс. Совместная ТВ и ИК информация позволяет сделать более надежную оценку синоптической обстановки и характера развития атмосферных процессов.
АК аппаратура предназначена для измерения радиации, уходящей от Земли. В ее составе имеются два сканирующих узко-секторных прибора, один — для диапазона 0,3—3 мкм, а другой для диапазона 3—30 и 8—12 мкм. Это позволяет исследовать отражательные и излучательные свойства облаков и открытых участков земной поверхности, а также радиационный баланс системы Земля—атмосфера.
За один оборот вокруг Земли спутник “Метеор” получает ТВ и ИК информацию с территории около 8% и о радиационных потоках—с 20% площади земного шара. Система из двух спутников, находящихся на круговых околополярных орбитах высотой около 630 км, плоскости которых пересекаются под углом 95°, дает в течение суток информацию с половины поверхности Земли. При этом каждый из районов планеты наблюдается с интервалом 6 ч.
В СССР создана также наземная система сбора, обработки и распространения метеоинформации, построенная на использовании электронно-вычислительных машин. Получаемая информация оформляется в виде снимков, на которые наносится сетка географических координат, свободных от перспективных искажений, приведенных к одному масштабу и удобных для сравнения с синоптическими картами. Результаты обработки данных АК аппаратуры представляются в виде цифровых карт с автоматически нанесенной на них сеткой координат и изолиниями. Полученная информация используется для международного обмена. Уже в течение ряда лет ученые социалистических стран ведут в рамках программы “Интеркосмос” исследования облачности, радиационного и теплового баланса системы Земля — атмосфера по спутниковым данным. В результате этой работы специалисты Болгарии, Венгрии, ГДР, Румынии и Советского Союза создали совместную книгу “Использование данных о мезомасштабных особенностях облачности в анализе погоды”. Это издание имеет практическое значение для оперативной работы синоптиков-прогнозистов. Большой практический интерес представляет также совместная работа ученых этих стран над усовершенствованием методов получения полей метеорологических элементов на основе спутниковой информации. В ряде социалистических стран создаются бортовые приборы, устанавливаемые на советских метеорологических спутниках, а также наземная аппаратура для приема информации со спутников в режиме непосредственной передачи.
Большие возможности для оперативного наблюдения погодных явлений имеют пилотируемые космические корабли и станции, так как космонавт может немедленно дать сведения о тех или иных погодных явлениях, не дожидаясь специальной обработки метеоинформации в наземном центре. В процессе полета космических кораблей “Союз” и орбитальных станций “Салют” был получен ряд ценных сведений, используемых в работе Гидрометцентра СССР.
Метеорологические системы как в СССР, так и в других странах непрерывно совершенствуются. Можно предполагать, что в будущем в метеорологическую систему войдут космические аппараты, расположенные на трех ярусах. Первый ярус составляет долговременные обитаемые орбитальные станции. Они обеспечат визуальные наблюдения геосферы и быстропротекающих метеорологических явлений, а также, приливов, обвалов, пыльных и песчаных бурь, цунами, ураганов, землетрясений. Второй ярус — это автоматические спутники типа “Метеор” на полярных и приполярных орбитах высотой 1—1,5 тыс. км. Основное их назначение — поставлять информацию, необходимую для численных методов прогнозирования погоды в глобальном и локальном масштабах, обеспечить наблюдение средне- и мелкомасштабных процессов в атмосфере. Наконец, третий ярус — метеорологические спутники на орбитах высотой до 36 тыс. км для непрерывного наблюдения динамических процессов в атмосфере Земли. Они дадут картину общей циркуляции атмосферы. Кроме того, такая трехъярусная метеосистема будет получать дополнительную информацию о “погоде” в космосе от космической службы Солнца и космоса. Суммируя всю эту информацию, ученые смогут точнее предсказывать ход событий в атмосфере, познать закономерности погодообразования, что позволит вплотную подойти к управлению погодой на нашей планете и создаст предпосылки для преобразования природы на Земле в нужном для человечества направлении.
Использование спутников в геодезии и навигации
Искусственные спутники открыли новую эру в науке об измерении Земли — эру космической геодезии. Они внесли в геодезию новое качество — глобальность; благодаря большим размерам зоны видимости поверхности Земли со спутника значительно упростилось создание геодезической основы для больших территорий, так как существенно сократилось необходимое количество промежуточных этапов измерений. Так, если в классической геодезии среднее расстояние между определяемыми пунктами составляет 10—30 км, то в космической геодезии эти расстояния могут быть на два порядка больше (1—3 тыс. км). Тем самым упрощается передача геодезических данных через водные пространства. Между материком и островами, рифами, архипелагами геодезическая связь может быть установлена при прямой их видимости со спутника непосредственно через него, без каких-либо промежуточных этапов, что способствует более высокой точности построения геодезической сети.
Основным методом космической геодезии является одновременное наблюдение спутника с наземных пунктов. При этом измеряются самые разнообразные параметры относительно положения пунктов и спутников. Параметрами могут служить дальность, скорость изменения дальности (или радиальная скорость), угловая ориентация линии визирования пункт—спутник в какой-либо системе координат, скорость изменения углов и т. д. Измерительные средства располагаются на наземных пунктах. На спутнике же размещается аппаратура, обеспечивающая работу этих измерительных средств. Спутник — это вспомогательный маяк для проведения измерений относительно положения опорных пунктов, причем этот маяк может быть как пассивным, так и активным. В первом случае спутник, освещенный солнцем или имеющий специальную лампу-вспышку, фотографируется с наземных пунктов на фоне звездного неба.
Одновременность наблюдений спутника с нескольких пунктов обеспечивается специальным синхронизирующим устройством, которое по сигналам единого времени производит одновременное открывание и закрывание затворов фотокамер. Наличие на фотографии изображений звезд (в виде точек) и следа спутника в виде пунктирной линии позволяет путем графических измерений определить взаимное положение штрихов пунктирной линии, соответствующих положениям спутника, и ближайших к ним точек, соответствующих звездам. Это дает возможность, зная положение звезд по звездному каталогу, определить координаты штрихов спутника или, точнее, угловую ориентацию линий визирования наблюдательный пункт—спутник. Совокупность угловых координат линии визирования пункт—спутник позволяет определить взаимную угловую ориентацию геодезических пунктов. Ориентация всей сети на поверхности Земли требует знания координат хотя бы одного пункта, определяемых классическими методами, и дальности до другого или координат двух пунктов, называемых базисными. - Для преодоления неблагоприятных метеорологических условий при оптических наблюдениях спутника используются радиотехнические средства. В этом случае спутник является как бы активным маяком. Применяются различные принципы измерений: эффект Доплера, смещение фаз радиосигналов спутника, принимаемых в различных точках пункта, время распространения сигнала пункт—спутник—пункт и т. д.
Большие перспективы в измерительной технике космической геодезии имеют оптические квантовые генераторы (лазеры). Они позволяют измерять дальность и радиальную скорость со значительно более высокой точностью, чем с помощью радиотехнических средств. Таким образом, космическая геодезия позволит уточнить форму Земли — геоид, точно определить координаты любых пунктов на поверхности нашей планеты, создать топографические карты на любые районы земной поверхности и определить параметры поля тяготения Земли.
Все это даст возможность морскому флоту определять очертания материков и получать точные координаты островов, рифов, маяков и других морских объектов, авиации — определять координаты аэропортов, наземных ориентиров и станций наведения. Эти данные позволят выбирать наилучшие маршруты движения и обеспечат надежность и безопасность работы морского и воздушного транспорта.