Смекни!
smekni.com

Строение галактики (стр. 4 из 4)

Также Огородников приводит примеры галактик, которые, вероятно имеют форму вытянутых трехосных эллипсоидов- сигар, а не являются дисками, наблюдаемыми с ребра.

Для таких галактик характерно отсутствие ядра- утолщения, наблюдаемого в центральной части.

Именно Огородников назвал эти галактики иглообразными.

Галактики довольно часто встречаются в виде пар, но гораздо труднее выяснить, является ли наблюдаемая пара физически двойной галактикой или это только оптическая пара. У двойной галактики движение одного компонента по орбите вокруг другого настолько медленно, что его невозможно заметить даже после многолетних наблюдений.

Каталог двойных галактик был составлен шведским астрономом Хольмбером. Он выделил все пары галактик, у которых взаимное расстояние компонентов не более , чем в два раза превосходит сумму их диаметров.

В каталоге оказалось 695 двойных галактик. Подавляющее большинство из них физически двойные галактики. Но о каждой паре отдельно можно сказать: вероятно, что это физически двойная галактика.

Пару галактик можно назвать физически двойной в трех случаях:

Если компоненты имеют общее происхождение;

Если компоненты динамически связаны, т. е. Сумма кинетической и потенциальной энергии компонентов отрицательна;

Если компоненты расположены в пространстве близко друг к другу.

Компоненты физически двойной галактики находятся практически на одинаковом от нас расстоянии. Поэтому лучевые скорости, вызванные расширением пространства, у них одинаковы.

Понятие “ Метагалактика” не является вполне ясным. Оно сформировалось на основании аналогии со звёздами. Наблюдения показывают, что галактики, подобно звёздам, группирующимся в рассеянные и шаровые скопления, также объединяются в группы- скопления различной численности.

Однако для звёзд известны объединения более высокого порядка- звёздные системы( галактики), характерные большей автономностью, т. е. Независимостью от влияния других тел, и большей замкнутостью, чем у звёздных скоплений. В частности, все звёзды, которые могут наблюдаться простым глазом в телескопы, образуют звёздную систему- нашу Галактику, насчитывающую около 100млд. Членов. В случае галактик аналогичные системы более высокого порядка непосредственно не наблюдаются.

Тем не менее имеются некоторые основания предполагать, что такая система, Метагалактика, существует, что она относительно автономна и является объединением галактик примерно такого порядка, каким для звёзд нашей системы является Галактика.

Следует предположить существование и других метагалактик.

Реальность метагалактики будет доказана, если удается как-то определить её границы и выделить наблюдаемые объекты, не принадлежащие ей.

В связи с гипотетичностью представлений о Метагалактики как об автономной гигантской системе галактик, включающей все наблюдаемые галактики, и их скопления, термин “ метагалактика” стал чаще применяться для облегчения обозреваемой ( при помощи всех существующих средств наблюдения) части Вселенной.

Распределение звезд на небе стал впервые изучать В. Гершель в конце 18 века. Результатом было фундаментальное открытие- явление концентрации звёзд и галактической плоскости.

Приблизительно через полтора столетия наступило время изучить распределение по небу галактик. Сделал это Хабл.

Галактики по блеску в среднем значительно уступают звездам. Звёзды до 6-й видимой величины на всем небе несколько тысяч, а галактики до 6- ти только четыре. Звёзд до 13 около трех млн., а галактики около семисот. Только тогда, когда рассматриваются очень слабые объекты, число галактик становится большим и начинает приближаться к числу звёзд той же величины.

Чтобы иметь достаточное количество подсчитываемых галактик, нужно использовать большие инструменты способные уловить блеск слабых объектов. Но при этом возникает дополнительная сложность, связанная с тем, что слабые галактики и слабые звёзды не так заметно отличаются друг от друга, как яркие звёзды от ярких галактик. Слабые галактики имеют очень маленькие видимые размеры и их легко при подсчётах принять за звёзды.

Хабл использовал 2,5- метровый телескоп обсерватории Маунт Вилсон в Калифорнии, вступивший в 20- е годы ХХ века в строй, и выполнил подсчеты галактик до 20- й видимой звёздной величины в 1283 маленьких площадках, распределённых по всему небу. В результате, число галактик в площадках Хабла оказывалось тем меньше, чем ближе была расположена площадка к Млечному Пути. Около самого галактического экватора в полосе толщиной в 20, галактики, за отдельными исключениями, вовсе не наблюдается. Можно сказать, что плоскость Галактики является для галактики плоскостью деконцентрации, а зона у галактического экватора зоной избегания.

Совершенно очевидно, что другие звёздные системы, а их миллионы, не могут располагаться в пространстве по зонному, диктуемому определенной ориентировкой плоскости симметрии нашей Галактики, которая сама является только одной из множества звёздных систем. Хаблу было ясно, что в данном случае наблюдается не истинное распределение галактик в пространстве, а распределение искаженное некоторыми условиями видимости.

В 1953 году французский астроном Вокулер, исследуя распределение по небу галактик до 12- й величины, т.е. ярких галактик, установил, что они определённо концентрируются к большому кругу, который перпендикулярен к галактическому экватору. Полоса, толщиной в 12 около этого круга, составляющая только 10% поверхности неба, включает приблизительно 2\3 всех ярких галактик. Число галактик на 1 кв. градус в полосе приблизительно в 10 раз больше, чем в областях вне полосы. Наука уже имела аналогичный опыт, когда Гершель, обнаружив концентрацию звёзд в галактической плоскости, установил существование нашей звёздной системы и определил, что она сплюснутая. Также и Вокулер пришел к выводу о существовании гигантской сплюснутой системы галактик и называл её сверхсистемой галактик.

Значение сверхсистемы галактик для общей структуры Вселенной велико. Сверхсистема по размерам значительно превосходит скопления галактик. Число галактик, входящих в её состав, исчисляются не тысячами, как в крупных скоплениях, а многими десятками тысяч, возможно, достигает ста тысяч.

Диаметр сверхсистемы можно оценить в 30 М пс. Галактика находится далеко от её центра и вообще близка к краю. Её расстояние от внешней границы сверхсистемы 2- 4 М пс. Центр сверхсистемы находится в скоплении галактик в Деве, а само это скопление может рассматриваться как ядро сверхсистемы.

Не только оптическое излучение галактик показывает концентрацию к плоскости сверхсистемы галактик. Общее радиоизлучение, исходящее от неба также обнаруживает явную концентрацию к той же плоскости. Так как радиоизлучение неба в значительной степени вызывается галактиками, то в этом можно видеть подтверждение реальности сверхсистемы галактик.

Расстояние до других галактик, в отличие от планет солнечной системы, очень велико, поэтому фактор времени приобретает решающее значение.

Скорость космической ракеты на различных участках пути ограничивается предельным ускорением, которое способны длительное время переносить пассажиры. Кроме того, скорость ракеты не может достичь скорости света.

Если ракета будет двигаться с постоянным ускорением 10 м\с , то пассажиры будут чувствовать себя превосходно. Состояние невесомости не будет, пассажиры будут испытывать совершенно те же физические ощущения, что и на Земле. Это объясняется тем, что ускорение силы тяжести на Земле также равно 10 м\с (точнее 9, 81 м\с) .

Но для уменьшения длительности полета нужна большая скорость и, следовательно, большее ускорение.

Здоровые люди могут длительное время удовлетворительно переносить постоянное ускорение в 20 м\с. Пассажир чувствовал бы себя так же как и на поверхности такой планеты, на которой ускорение силы тяжести, и значит сила тяжести, вдвое больше, чем на Земле. Дополнительная нагрузка к обычному весу будет при этом равномерно распределяться по всему организму человека.

Итак, можно принять постоянное ускорение 20 м\с. При таком ускорении на огромных расстояниях скорость может достичь очень больших величин.

Величина достигаемой ракетной скорости тем больше, чем больше отношение массы ракеты с топливом к её массе без топлива.

Пока не достигнуты очень большие скорости и можно пользоваться классической механикой, постоянное отношение силы тяги к массе ракеты 20 м\с равно ускорению ракеты.

Скорость 55,2 км\с будет достигнута через 2760с, когда пройденный путь окажется равным 76 000 км. После этого расстояния топливо будет исчерпано, устройство ракеты перестанет действовать.

Таким образом, употребляемый в настоящее время в космонавтике способ сообщения ракете тяги при помощи сгорания химического топлива не может быть применен для полета к звёздам и галактикам. Он годен только в Солнечной системе. Необходимо найти такой метод создания реактивной тяги, при котором вылетающие частицы имели бы гораздо большую скорость, чем у современных ракет. Нужно, чтобы эта скорость была сравнима со скоростью света или даже равна ей. Идея такой ракеты предложена давно. Роль вылетающих частиц из ракеты должна играть частицы света- фотоны, а ракета будет двигаться в противоположном направлении. Источником излучения могут быть ядерные реакции и другие процессы, при которых происходит выделение электромагнитной энергии.

Трудности связанны с необходимостью получить мощный поток фотонов при сравнительно небольшом весе устройства. Кроме того, нужно огородить устройство от разрушающего действия высоких температур. Пока такой источник энергии не создан, но он по- видимому , будет создан.

Но все- таки, как бы ни были велики достижения человека, даже использование в будущем фотонной ракеты с очень большим отношением начальной и конечной масс позволит совершать полеты с возвращением только до нескольких самых близки звёзд. Достижение других галактик никогда не будет доступно человеку. И от того людям звёзды кажутся чем- то загадочным, сказочным, чудесным. И нет наверное человека, который бы не любовался ими, не любил звёзды.

Список литературы

Арзуманян “Небо. Звёзды. Вселенная” М. 1987 г.

Воронцов Б.А. “Очерки о Вселенной” М. 1976 г.

Зигель Ф.Ю. “Сокровища звёздного неба” М. 1976 г.

Климишин И.А. “Астрономия наших дней” М. 1980

Агекян Т.А. “Звёзды. Галактики. Метагалактики” М. 1982г.

Чихевский А.А. “ Земное эхо солнечных бурь” М. 1976г.