Вернёмся к формуле (4а) и попытаемся на её основе выстроить гипотезу для понимания механизма размещения внутри поля энергии взаимодействия U. Будем считать, что плотность ρ описывает, как заряды, изначально создающие поле, так и заряды, образованные (наведенные) полем в физическом вакууме. Теперь подынтегральное выражение (4а) можно положить равным нулю в каждой точке поля,
(ε0E2 – φρ)/2 = 0; (31)
при этом дислокация ρ не будет точечной, но закономерности Е и φ, определённые формулами (2) и подтверждённые экспериментально, не подлежат пересмотру. Совпадение «точечных» расчётов с опытом имеет место и для неточечных, но сферически симметричных источников. Кроме того, мы полагаем, что суммарный наведенный заряд, состоящий из равного количества положительных и отрицательных зарядов, равен нулю.
Из выражения (31) по известным значениям E и φ можно найти некоторые свойства одной из моделей физического вакуума – «поляризованного» вакуума [8]. Согласно этой модели возбуждение вакуума заключается «в узком смысле слова, в рождении виртуальных пар заряженных частиц-античастиц (напр., пар электрон – позитрон) из вакуума... Этот эффект аналогичен поляризации диэлектрической среды внесённым в неё зарядом...». Из работы [3] следует, что в данной среде можно ожидать появления связанных зарядов с объёмной плотностью ρ'. При отсутствии сторонних зарядов в рассматриваемой части диэлектрика,
ρ' = –ε0·(Egradχ)/(1 + χ). (32)
Здесь χ – диэлектрическая восприимчивость (неоднородной, но изотропной) среды.
Преобразуем второй член в формуле (31), используя (2) и (9),
φρ = (φ1 + φ2)(ρ1 + ρ 2) = φ1ρ1 + φ2ρ2 + φ1ρ2 + φ2ρ1 = φ1ρ1 + φ2ρ2 + φρ12', (33)
ρ12' = (φ1ρ2 + φ2ρ1)/φ. (34)
Расписывая первый член формулы (31), имеем сумму W1, W2, W3 (см. формулы (3),(12),(13)). Таким образом, можно написать три равенства,
φ1ρ1 = 2W1, φ2ρ2 = 2W2, φρ12' = 2W3. (35)
Два первых равенства в (35) можно дополнить соотношениями
∫V ρ1dV = Q1, ∫V ρ2dV = Q2; (36)
в данной работе они не рассматриваются. Представляет, однако, интерес по теме статьи крайнее справа равенство в (35). Значение плотности
ρ12' = 2W3/φ (37)
можно трактовать, как источник поля с энергетической плотностью W3, образованный внешними силами. Вследствие того, что силовое поле от ρ12' не выходит из замкнутой поверхности (8), суммарный по объёму заряд от этой плотности должен равняться нулю. Ниже на рис. 4а (S) и рис. 4 б (Q) представлены расчётные значения ρ12'.
Рис. 4. Объёмная плотность ρ12': а) вычисленная для одноимённых зарядов по формуле (37) в пределах (–0,5 < x < 1,5; –1 < y < 1); б) вычисленная для разноимённых зарядов
Заряды расположены в плоскости (x, y) в точках с координатами (0, 0) и (1, 0). Для перехода к абсолютным величинам значения плотности на графике следует умножить на константу (q/4πR03). Здесь имеется неопределённость в плоскости, перпендикулярной оси x, посередине между зарядами, где φ1 + φ2 = 0.
В центральной зоне и её окрестностях плотность ρ12' принимает как положительные, так и отрицательные значения. При перемещении точки наблюдения в поле от зарядов на периферию числитель (37) уменьшается значительно быстрее, чем знаменатель. Поэтому уже вблизи зарядов и далее, на больших расстояниях, ρ12' → 0. Для разноимённых зарядов выполняется наглядно условие ∫V ρ12'dV = 0, так как интегрирование по x от –∞ до +∞ при любом y даёт нуль. В случае одноимённых зарядов подобная проверка связана с техническими трудностями.
Сравним формулы (32) и (37). Рассматриваемый вакуум неразрывно связан с породившим его электростатическим полем, и потому он называется электромагнитным (синонимы: фотонный, электрон-позитронный). Диэлектрическая восприимчивость χ вакуума должна зависеть от характеристик поля: нет поля, – нет поляризации вакуума, χ = 0. И далее: «вакуум является ареной физических процессов, обусловленных флуктуациями вакуума» [6]. Следовательно, с увеличением потенциала φ поля флуктуации будут более интенсивными, и восприимчивость вакуума к поляризации возрастёт. Суммируя сказанное, мы принимаем простейший вариант зависимости χ = kφ, где k = const., и вернёмся к формуле (32). После подстановки χ = kφ в (32) имеем,
ρ' = –ε0(E∙gradkφ)/(1 + kφ) = ε0kЕ2/(1 + kφ) = 2k(W1 + W2 + W3)/(1 + kφ) = ρ1 + ρ2 + ρ12'. (38)
Согласно работе [3] знаменатель в формуле (38) представляет собой относительную диэлектрическую проницаемость ε среды, ε = 1 + χ = 1 + |kφ|. Знак модуля введён потому, что в изотропной среде величина χ не зависит от направления поля. Если |kφ| >> 1, то единицей в знаменателе (38) можно пренебречь, и плотность ρ12', найденная из формулы (38), полностью совпадает с вычисленной по (37). Неравенство |kφ| >> 1 и, следовательно, ε >> 1 логически вписывается в модель «поляризованного» вакуума.
Переход диэлектрической проницаемости вакуума от ε = 1 (обычный вакуум) к ε >> 1 (физический вакуум) в результате взаимодействия зарядов означает, что поле аккумулирует внешнюю энергию посредством ослабления связи виртуальных частиц и создания в вакууме связанных зарядов.
Автор выражает искреннюю благодарность В.С. Лаврусу за помощь при подготовке статьи к печати.
Список литературы
Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 5. Электричество и магнетизм. / Пер. с англ. – М: «Мир», 1966.
Парселл Э. Электричество и магнетизм. Берклеевский курс физики. Т. 2. / Пер. с англ. – М: «Наука», 1975.
Савельев И.В. Курс общей физики. Т. 2. Электричество и магнетизм. Волны. Оптика. – М: «Наука», 1978.
Детлаф А.А., Яворский Б.М. Курс физики. – М: «Высшая школа», 1999.
Медведев Б.В. Начала теоретической физики. – М: «Наука», 1977.
Матвеев А.Н. Квантовая механика и строение атома. – М: «Высшая школа», 1985.
Фейнман Р. Теория фундаментальных процессов. / Пер. с англ. – М: «Наука», 1978.
Физический энциклопедический словарь. // Под. ред. Прохорова А.М. – М: «Советская энциклопедия», 1983.
Гольдштейн Л.Д., Зернов Н.В. Электромагнитные поля и волны. – М: «Советское радио», 1956.
Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 6. Электродинамика. / Пер. с англ. – М: «Мир», 1966.
Сивухин Д.В. Общий курс физики. Т. 3. Электричество. – М: «Наука», 1977.
Фейнман Р., Хибс А. Квантовая механика и интегралы по траекториям. / Пер. с англ. – М: «Мир», 1968.
Фейнман Р. Характер физических законов. Нобелевская лекция: разработка квантовой электродинамики в пространственно–временном аспекте. / Пер. с англ. – М: «Мир», 1968.
Фейнман Р. КЭД – странная теория света и вещества. / Пер. с англ. – М: «Наука», 1988.