Смекни!
smekni.com

Случайность в арифметике (стр. 3 из 3)

Тот факт, что многие математические проблемы оставались веками и даже тысячелетиями нерешёнными, похоже, подтверждает мою точку зрения. Математики непоколебимо стоят на том, что причина неудач в решении подобных проблем заключена только в самих проблемах, но не заключается ли она в неполноте системы их аксиом? Например, вопрос о том, существуют ли нечётные совершенные числа, не поддаётся решению со времён древних греков. (Совершенным называется число, равное сумме своих делителей, исключая само это число. Например, 6 — совершенное число, поскольку 6=1+2+3.) Не может ли быть так, что утверждение «Не существует нечётных совершенных чисел» недоказуемо? Если это так, то не лучше ли принять его за аксиому?

Большинству математиков это предположение может показаться смехотворным, но для физика или биолога оно не выглядит столь уж абсурдным. Для тех, кто работает в эмпирических областях науки, основным критерием, позволяющим судить о том, следует ли рассматривать некоторое суждение как основание теории, служит полезность этого суждения, а вовсе не обязательно его «самоочевидная истинность». Если имеется много догадок, которые можно обосновать обращением к некоторой гипотезе, учёные-эмпирики принимают эту гипотезу. (Из несуществования нечётных совершенных чисел, по-видимому, не следует важных выводов, и, согласно этому критерию, такая аксиома не является полезной.)

На самом деле в некоторых случаях математики в своей работе опираются на недоказанные, но полезные предположения. Например, так называемая гипотеза Римана, хотя она никогда не была доказана, часто считается верной, потому что на ней основано много важных теорем. Более того, эта гипотеза была эмпирически проверена с помощью самых мощных компьютеров, и ни один опровергающий её пример не был найден. Компьютерные программы (которые, как я уже сказал, эквивалентны математическим утверждениям) проверяются таким же способом — тестированием некоторого числа вариантов, а не строгим математическим доказательством.

Существуют ли проблемы в других областях науки, для решения которых был бы полезен этот экскурс в основания математики? Я думаю, алгоритмическая теория информации может применяться в биологии. Регуляторные гены развивающегося зародыша являются по существу вычислительной программой построения организма. «Сложность» этой биохимической компьютерной программы можно, как мне думается, определить в терминах, аналогичных тем, что я развил при квантификации информационного содержания Ω.

Хотя Ω совершенно случайна (или бесконечно сложна) и никогда не может быть вычислена точно, её можно аппроксимировать с произвольной точностью, если в распоряжении имеется бесконечный отрезок времени. Мне кажется, что «сложность» живого организма может быть приближена таким же образом. Последовательность Ωn, аппроксимирующую Ω, можно рассматривать как метафору эволюции, и, возможно, она содержит зерно математической модели, описывающей эволюцию «сложности» биологического организма.

В конце своей жизни Дж. фонНейман призвал математиков заняться созданием абстрактной математической теории происхождения и эволюции жизни. Эта фундаментальная проблема, подобно большинству проблем такого масштаба, бесконечно трудна. Возможно, алгоритмическая теория информации позволит найти путь, по которому следует идти.

Списоклитературы

1. G.J.Chaitin. Algorithmic information theory. Cambridge University Press, 1987.

2. G.J.Chaitin. Information, randomness & incompleteness. World Scientific Publishing Co. Pte. Ltd., 1987.

3. I.Stewart. The ultimate in undecidability. In: Nature, 1988, v.232, No.6160, pp.115–116.

4. Я.М.Бардзинь. Алгоритмическая теория информации. В кн.: Математическая энциклопедия. т.1. М.: Советская энциклопедия, 1977.

5. А.Н.Колмогоров, В.А.Успенский. Алгоритмы и случайность. Теория вероятностей и её применения, 1987, т.32, вып.3.

6. М.Клайн. Математика. Утрата определённости. М.: Мир, 1984.