Этот вопрос не является тестом на сообразительность — и ответить на него оказывается не просто. Множество было названо (как мы писали в нашем журнале) «сложнейшим математическим объектом». Это утверждение можно оспаривать, бесспорно, однако, то, что множество Мандельброта является самым известным математическим объектом. Бесконечно сложное изображение множества, сгенерированное компьютером, стало символом процветающей теории хаоса и привлекает к себе огромное внимание общественности.
Множество названо в честь Бенуа Р.Мандельброта, математика из Исследовательского центра им.Томаса Уотсона корпорации IBM. Он стал известен в основном после того, как ввёл термин «фрактал» для описания объектов, структура которых многократно повторяется при переходе ко всё более мелким масштабам (примерами могут служить очертания береговых линий, снежинок, горных хребтов и ветвей дерева).
Мандельброт утверждал, что он и только он открыл это множество, обладающее фрактальными свойствами, около десяти лет назад. Об изображении множества он говорил как о своей «подписи».
Трое других математиков оспаривают его утверждение. Двое настаивают на том, что они открыли и описали множество приблизительно в то же самое время, что и Мандельброт. Третий же говорит, что его работа над множеством не только предшествовала исследованиям Мандельброта, но и помогла последнему в его исследованиях. Эти утверждения долгое время циркулировали в математических кругах, но лишь недавно впервые появились в печати.
У математиков редко возникают споры относительно того, кто является первооткрывателем, однако Мандельброт, который сам себя называет «чёрной овечкой», часто вступает в конфликты со своими коллегами. «Если бы не его личные качества, — заметил Р.Л.Дивейни из Бостонского университета, который, между прочим, восхищается исследованиями Мандельброта, — то и не возникло бы никаких противоречий».
В данном случае «ставки» научного престижа достаточно велики. Даже те, кто посмеивается над широкой популярностью множества, всё же признают его значение в математике. Д.Р.Салливен из Нью-Йоркского городского университета называет его пробным «тигелем», в котором тестируются идеи, касающиеся поведения динамических (нелинейных, сложных или хаотических) систем. «Оно действительно имеет фундаментальное значение», — говорит он.
Привлекательность этого множества отчасти заключается в простоте порождающего его уравнения: z2+c. Здесь z и c — комплексные числа, состоящие из мнимого числа (сомножителем которого является корень квадратный из –1) в сочетании с действительным числом. Сначала величине c присваивается фиксированное значение, z приравнивается к нулю и вычисляется результат выражения. Затем этот результат присваивается переменной z, выражение вычисляется снова и снова — оно, как говорят, итерируется, и каждый раз его результат присваивается переменной z. Некоторые значения c, подставляемые в эту итерационную формулу, дают результаты, быстро нарастающие до бесконечности. При других же значениях c результаты всё время скачут в определённых границах. Эта последняя группа значений c, или комплексных чисел, и составляет множество Мандельброта.
Нанесённые на плоскость, которую образуют все комплексные числа, точки, принадлежащие множеству, образуют кластер своеобразного очертания. Издали объект как будто не представляет собой ничего особенного, его сравнивают с изображением сердца, на котором образовались опухоли, с жуком, зажаренным цыплёнком, неуклюжей восьмёркой, лежащей на боку.
При более близком рассмотрении можно обнаружить, что границы множества не образуют чётких линий. Они несколько размыты и слегка «мерцают». При всё бóльших и бóльших увеличениях видно, как границы погружаются в бесконечную фантасмагорию затейливых узоров. Некоторые формы, в частности серцевидные, всё время повторяются, но всякий раз с едва заметными вариациями.
Сейчас практически каждый, кто обладает персональным компьютером, может сам «открыть» множество (см. статью в рубрике «Занимательный компьютер» в журнале «В мире науки», №10 за 1985г.). Но 11 лет назад компьютеры были значительно менее мощными, и немногие математики возлагали на них надежду как на средство, способное помочь в решении сложных научных задач.
Даже сам Мандельброт в 1979г. охарактеризовал свои первые пробные шаги по исследованию множества как «бессмысленную забаву». Он начал пользоваться компьютером, чтобы получать изображения множеств Жюлиа, которые вычисляются путём подстановки комплексного числа в итерационные функции. Необычные свойства этих множеств были описаны ещё в 1906г. французским математиком Пьером Фату. Множества были позже названы в честь Гастона Жюлиа, который доказал, спустя десятилетие, что его исследования множеств имели более важное научное значение по сравнению с работами Фату. Мандельброт, родившийся 65 лет назад в Польше, читал работы обоих учёных, а позднее учился у Жюлиа в 40-х годах.
Уже первые компьютерные изображения подтвердили подозрения Мандельброта, что множества Жюлиа обладают фрактальными свойствами. По его словам, он начал получать изображения множества (позже названные его именем), которые в определённом смысле являются обобщением всех множеств Жюлиа, в конце 1979г. Впоследствии Мандельброт опубликовал изображения множества и подчёркивал его значение в своих публичных выступлениях, статьях и книгах. Это открытие и другие его работы в области фракталов широко освещались в прессе, в многочисленных книгах (в частности, в бестселлере «Хаос», который был написан бывшим репортером «Нью-Йорк таймс» Дж.Глейком), а также в рекламных изданиях корпорации IBM.
Никто не отрицает, что изображения и описания Мандельброта стимулировали интерес других математиков к множеству. В качестве двух ярких примеров можно привести Дж.Хаббарда из Корнеллского университета и Э.Дуади из Парижского университета. В начале 80-х годов доказывая, что крошечные «островки», окружающие тело множества, связаны с ним бесконечно тонкими отростками, они назвали его множеством Мандельброта. «Мандельброт был первым, кто получил изображение множества на дисплее компьютера и описал его в литературе», — писал не так давно Дуади.
Однако теперь, по словам Дуади, другие математики стали считать, что Мандельброт присвоил себе слишком большие заслуги в том, что было сделано другими, а именно в исследованиях, посвящённых этому множеству и связанных с ним областям теории хаоса. «Он любил цитировать самого себя, — говорил Дуади, — и очень неохотно цитирует других, ещё не умерших исследователей».
Прошлой осенью С.Кранц из Вашингтонского университета затронул эту тему в статье, опубликованной в журнале "Mathematical Intelligencer". Главный его вывод заключался в том, что фракталы, графика, генерируемая компьютером, и другие «популярные» математические явления, связанные с множеством Мандельброта, не внесли сколько-нибудь существенного вклада в математику, особенно на фоне завоёванной ими популярности.
Это мнение — впрочем, как и противоположное, согласно которому «широко известные» исследования Мандельброта послужили стимулом для дальнейшего прогресса в математике, — высказывались и раньше. Однако Кранц привнёс в эти дебаты новый аспект, утверждая, что множество Мандельброта не было открыто Мандельбротом и упоминалось явно в литературе ещё за два года до того, как родился термин «множество Мандельброта». И он назвал работу Р.Брукса и Дж.Мателски, опубликованную в докладах конференции, состоявшейся в 1978г. в Стоун-Бруке (шт. Нью-Йорк).
И действительно, статья содержит знаменитую формулу z2+c и не совсем чёткую, но всё же безошибочную компьютерную распечатку основного изображения множества Мандельброта. Брукс и Мателски говорят, что в действительности они не представили эту работу на конференцию 1978г., но распространили её в качестве препринта в начале 1979г. Брукс, работающий сейчас в Калифорнийском университете в Лос-Анджелесе, представил статью также в Гарвардском университете весной того же года (Мандельброт, в то время посетивший Гарвард, говорит, что не слышал доклада Брукса и впервые увидел статью лишь спустя несколько лет.) Однако статья так и не была опубликована до начала 1981г.
Множество Мандельброта может порождаться различными способами и принимать различные формы. Изображение, опубликованное Р.Бруксом и Дж.Мателски в 1981г. (слева) было получено по стандартной формуле z2+c. Статья, написанная Мандельбротом в 1980г., содержит изображение, полученное с помощью несколько отличающейся функции (в центре). Дж.Хаббард несколькими годами позже установил, что с помощью итерационного процесса, называемого методом Ньютона, можно также получить отчётливое изображение множества Мандельброта (справа).
Опровергая статью Кранца, озаглавленную «Некоторые "факты", испаряющиеся при внимательном рассмотрении», Мандельброт отметил, что он «достаточно полно опубликовал» информацию о множестве Мандельброта до того, как это сделал Брукс и Мателски. (В статье Мандельброта, опубликованной 26декабря 1980г. в сборнике "Annals of the New York Academy of Sciences", представлены функция и изображение, являющиеся одной из разновидностей того множества Мандельброта, которое он впервые описал в печати в 1982г.)
Мандельброт говорил также, что даже если публикация Брукса и Мателски предшествовала его публикациям, то их всё же нельзя считать первооткрывателями множества, поскольку они не поняли его истинного значения. «Они были очень близки к тому, что позже окажется важным, но не задумались над полученным изображением».
В следующем номере журнала "Intelligencer" Брукс ответил: «Я не понимаю, как он может так уверенно судить, о чём мы задумывались и о чём не задумывались». Брукс заявил, что относится с уважением к деятельности Мандельброта в качестве популяризатора и не возражает, чтобы множество носило его имя. «Наверное, это будет лучше, чем называть его «большой кардиоидой», — сказал он, вспоминая, как он и Мателски первоначально назвали множество. — Просто хотелось бы , чтобы Мандельброт вёл себя повежливее».