Смекни!
smekni.com

Теория игр и принятие решений (стр. 3 из 4)

P(Fj) = qj = 0.33,

рекомендуется отказаться от проверки. Матрица остатков для этого примера и их оценка (в тысячах) согласно критерию Сэвиджа имеет вид:

Критерий Сэвиджа
F1 F2 F3 eir=
aij
eir
E1 +20.0 0 0 +20.0
E2 +14.0 +1.0 +6.0 +14.0 +14.0
E3 0 +2.0 +15.0 +15.0

Пример специально подобран так, что каждый критерий предлагает новое решение. Неопределённость состояния, в котором проверка застаёт ЭВМ, превращается в неясность, какому критерию следовать.

Поскольку различные критерии связаны с различными условиями, в которых принимается решение, лучшее всего для сравнительной оценки рекомендации тех или иных критериев получить дополнительную информацию о самой ситуации. В частности, если принимаемое решение относится к сотням машин с одинаковыми параметрами, то рекомендуется применять критерий Байеса-Лапласа. Если же число машин не велико, лучше пользоваться критериями минимакса или Севиджа.

Производные критерии.

1о. Критерий Гурвица.

Стараясь занять наиболее уравновешенную позицию, Гурвиц предположил оценочную функцию, которая находится где-то между точкой зрения крайнего оптимизма и крайнего пессимизма:

eir = {C
eij + (1- C)
eij},

где С– весовой множитель.

Правило выбора согласно критерию Гурвица, формируется следующим образом:

матрица решений

дополняется столбцом, содержащим среднее взвешенное наименьшего и наибольшего результатов для каждой строки. Выбираются только те варианты, в строках которых стоят наибольшие элементы eirэтого столбца.

При С=1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий “азартного игрока”

eir =
eij ,

т.е. мы становимся на точку зрения азартного игрока, делающего ставку на то, что «выпадет» наивыгоднейший случай.

В технических приложениях сложно выбрать весовой множитель С, т.к. трудно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего С := 1/2.

Критерий Гурвица применяется в случае, когда :

о вероятностях появления состояния Fj ничего не известно;

с появлением состояния Fj необходимо считаться;

реализуется только малое количество решений;

допускается некоторый риск.

2о. Критерий Ходжа–Лемана.

Этот критерий опирается одновременно на ММ-критерий и критерий Баеса-Лапласа. С помощью параметра n выражается степень доверия к используемому распределений вероятностей. Если доверие велико, то доминирует критерий Баеса-Лапласа, в противном случае – ММ-критерий, т.е. мы ищем

eir =
{n
+ (1-n)
eir}, 0 £n£ 1.

Правило выбора, соответствующее критерию Ходжа-Лемана формируется следующим образом:

матрица решений

дополняется столбцом, составленным из средних взвешенных (с весом nºconst) математическое ожиданиями и наименьшего результата каждой строки (*). Отбираются те варианты решений в строках которого стоит набольшее значение этого столбца.

При n = 1 критерий Ходжа-Лемана переходит в критерий Байеса-Лапласа, а при n = 0 становится минимаксным.

Выбор n субъективен т. к. Степень достоверности какой-либо функции распределения – дело тёмное.

Для применения критерия Ходжа-Лемана желательно, чтобы ситуация в которой принимается решение, удовлетворяла свойствам:

вероятности появления состояния Fj неизвестны, но некоторые предположения о распределении вероятностей возможны;

принятое решение теоретически допускает бесконечно много реализаций;

при малых числах реализации допускается некоторый риск.

3о. Критерий Гермейера.

Этот критерий ориентирован на величину потерь, т.е. на отрицательные значения всех eij. При этом

eir =
eijqj.

Т.к. в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условие eij<0 обычно выполняется. В случае же, когда среди величин eij встречаются и положительные значения, можно перейти к строго отрицательным значениям с помощью преобразования eij- a при подходящем образом подобранном a> 0. При этом оптимальный вариант решения зависит от а.

Правило выбора согласно критерию Гермейера формулируется следующим образом :

матрица решений

дополняется ещё одним столбцом содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния Fj. Выбираются те варианты в строках которых находится наибольшее значение eij этого столбца.

В каком-то смысле критерий Гермейера обобщает ММ-критерий: в случае равномерного распределения qj =

, j =
, они становятся идентичными.

Условия его применимости таковы :

вероятности появления состояния Fj неизвестны;

с появлением тех или иных состояний, отдельно или в комплексе, необходимо считаться;

допускается некоторый риск;

решение может реализоваться один или несколько раз.

Если функция распределения известна не очень надёжно, а числа реализации малы, то, следуя критерию Гермейера, получают, вообще говоря, неоправданно большой риск.

4о. BL (MM) - критерий.

Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса.

Правило выбора для этого критерия формулируется следующим образом:

матрица решений

дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором - разность между опорным значением

и наименьшим значением

соответствующей строки. В третьем столбце помещаются разности между наибольшим значением

каждой строки и наибольшим значением

той строки, в которой находится значение
. Выбираются те варианты, строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение

из второго столбца должно быть или равно некоторому заранее заданному уровню риска

. Значение же из третьего столбца должно быть больше значения из второго столбца.

Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:

вероятности появления состояний Fj неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения;

необходимо считаться с появлением различных состояний как по отдельности, так и в комплексе;