Смекни!
smekni.com

Математики эпохи Возрождения (стр. 3 из 3)

В 1571 г. Виет переехал в Париж, где возобновил адвокатскую практику, а позже стал советником парламента в Бретани.накомство с Генрихом Наваррским, будушим королём Франции Генрихом IV, помогло Виету занять видную придворную должность - тайного советника - сначала при короле Генрихе III, а затем и при Генрихе IV.

Голландский математик Андриан ван-Роумен, известный, пожалуй, тем, что вычислил число p; с восемнадцатью верными знаками, повторив тем самым через 150 лет результат среднеазиатского математика ал-Каши, в конце 16 столетия решил бросить вызов всем математикам мира. Он разослал во все европейские страны уравнение 45-й степени: x45 - 45x43 + 945x41 - 12300x39 +... + 95634x5 - 3795x3 + 45x = a, Французским математикам он решил это уравнение не посылать, считая, что там нет способных справиться с задачей: Декарт в то время еще не родился, Пьера Рамуса в 1572 убили в Варфоломеевскую ночь, о других математиках не было слышно. Так французские математики не смогли принять вызов. Больше всего было ущемлено самолюбие Генриха IV (кто не знает - это дедушка Людовика XIV). - И все же у меня есть математик! - воскликнул король. - Позовите Виета!

В приемную короля вошел пятидесятитрехлетний седоволосый советник короля Франсуа Виет. Он тут же, в присутствие короля, министров и гостей, нашел один корень предложенного уравнения. Виет увидел, что а есть сторона правильного 15-угольника, вписанного в круг радиуса 1, а по коэффициентам второго и последнего членов заключил, что х есть хорда 1/45 этой дуги, как оно и было на самом деле. Король ликовал, все поздравляли придворного советника. На следующий день Виет нашел еще 22 корня уравнения, описываемые выражением: при n=1,2,...,22. Этим он и ограничился, так как остальные 22 корня - отрицательные, а Виет не признавал ни отрицательных, ни мнимых корней.

После такого успеха Виета составитель злополучного уравнения Роумен стал ревностным почитателем его. Нельзя сказать, что во Франции о Виете ничего не знали. Громкую славу он получил еще раньше, при Генрихе III во время франко-испанской войны. Испанские инквизиторы изобрели очень сложную тайнопись (шифр), которая все время изменялась и дополнялась. Благодаря этому шифру воинствующая и сильная в то время Испания могла свободно переписываться с противниками французского короля даже внутри Франции, и эта переписка оставалась неразгаданной. После бесплодных попыток найти ключ к шифру король обратился к Виету. Рассказывают, что Виет, две недели подряд дни и ночи просидев за работой, все же нашел ключ к испанскому шифру. После этого неожиданно для испанцев Франция стала выигрывать одно сражение за другим. Испанцы долго недоумевали. Наконец им стало известно, что шифр для французов уже не секрет и что виновник его расшифровки - Виет. Будучи уверенными, в невозможности разгадать способ тайнописи людьми, они обвинили Францию перед папой римским и инквизицией в кознях дьявола, а Виет был обвинен в союзе с дьяволом и приговорен к сожжению на костре. К счастью для науки, он не был выдан инквизиции. Франсуа Виет родился в 1540 году в городе Фонтене ле-Конт провинции Пуату. Получив юридическое образование, он в 19 лет успешно занимался адвокатской практикой в родном городу. Как адвокат Виет пользовался у населения авторитетом и уважением. Он был широко образованным человеком. Он знал астрономию и математику, и все свободное время отдавал этим наукам. Преподавая частным образом астрономию дочери одной знатной клиентки, Виет пришел к мысли составить труд, посвященный усовершенствованию птолемеевской системы. Затем он приступил к разработке тригонометрии и приложению ее к решению алгебраических уравнений. В 1571 году Виет переехал в Париж и там познакомился с математиком Пьером Рамусом. Благодаря своему таланту и отчасти благодаря браку своей бывшей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником Генриха III, а после его смерти - Генриха IV. Но главной страстью Виета была математика. Он глубоко изучил сочинения классиков Архимеда и Диофанта, ближайших предшественников Кардано, Бомбелли, Стевина и других. Виета они не только восхищали, в них он видел большой изъян, заключающийся в трудности понимания из-за словесной символики. Почти все действия и знаки записывались словами, не было намека на те удобные, почти автоматические правила, которыми мы сейчас пользуемся. Нельзя было записывать и, следовательно, изучать в общем виде алгебраические уравнения или какие-нибудь алгебраические выражения. Каждый вид уравнения с числовыми коэффициентами решался по особому правилу. Так, например, у Кардано рассматривались 66 видов алгебраических уравнений. Поэтому надо было доказать, что существуют такие общие действия над всеми числами, которые от этих самых чисел не зависят. Виет и его последователи установили, что не имеет значения, будет ли рассматриваемое число количеством предметов или длиной отрезка. Главное, что с этими числами можно производить алгебраические действия и в результате снова получить числа того же рода. Значит их можно обозначить какими-либо отвлеченными знаками. Виет это и сделал. Он не только ввел свое буквенное исчисление, но сделал принципиально новое открытие, поставив перед собой цель изучать не числа, а действия над ними. Правда у самого Виета алгебраические символы были еще мало похожи на наши. Например современную запись уравнения x3 + 3bx = d Виет записывал так: Acubus + BplanuminA3 aequaturDsolido. Здесь еще, как видим, много слов. Но ясно, что они уже играют роль наших символов. Такой способ записи позволил Виету сделать важные открытия при изучении общих свойств алгебраических уравнений. Не случайно, что за это Виета называют "отцом" алгебры, основоположником буквенной символики. Особенно гордился Виет всем известной теперь теоремой о выражении корней квадратного уравнения через его коэффициенты, полученной им самостоятельно, хотя как теперь стало известно, зависимость между коэффициентами и корнями уравнения (даже более общего вида, чем квадратное) была известна еще Кардано, а в таком виде, в каком мы используем ее для квадратного уравнения древним вавилонянам. Из других открытий Виета следует отметить выражение для синусов и косинусов кратных дуг через sin(x) и cos(x). Эти знания тригонометрии Виет с успехом применял как в алгебре при решении алгебраических уравнений, так и в геометрии, например, при решении с помощью циркуля и линейки знаменитой задачи Аполлония Пергского о построении круга, касательного к трем данным кругам. Гордясь найденным решением, Виет называл себя Аполлоном Галльским (Галлией во времена древнего Рима называли современную Францию). В последние годы жизни Виет занимал важные посты при дворе короля Франции. Умер он в Париже в самом начале семнадцатого столетия. Есть подозрения, что он был убит.

Лука Пачиоли

Лука Пачоли (около 1445 - около 1514) был крупнейшим европейским алгебраистом XV в. Он родился в местечке Борго-Сан-Сеполькро в Центральной Италии, учился в Болонском университете. Пачоли стал профессором математики и преподавал в Риме, Неаполе, Милане, Флоренции, Болонье.

В Милане он подружился с выдающимся художником и учёным Леонардо да Винчи. По настоянию Леонардо в 1497 г. Пачоли написал книгу "О Божественной пропорции" (её печатное издание вышло в Венеции в 1509 г.). Сам Леонардо выполнил иллюстрации для этой книги, в том числе 59 изображений многогранников. Но самым знаменитым сочинением Пачиоли стала "Сумма знаний по арифметике, геометрии, отношениям и пропорциональности" (1487 г.). Книга была напечатана в Венеции в 1494 г.

Заключение

В 16 веке европейские математики сумели, наконец, сравниться в мудрости с древними греками и превзойти их там, где успехи эллинов были не велики: в решении уравнений. Такой прорыв в неведомое стал итогом долгой культурной революции. Она началась в 14 веке, когда в Италии появились первые великие поэты Нового времени: Данте Алигьери (1265-1321) и Франческо Петрарка . Подобно Гомеру, они объявили своим современникам: пришла пора строить новый мир, равняясь на античные образцы и стараясь их превзойти!

Одновременно с такими спорами и мучениями первопроходцев-теоретиков, привычная арифметика целых чисел и десятичных дробей уверенно проникала в быт новых европейцев Учебники практической геометрии и арифметики издавались тиражами в сотни экземпляров на живых языках: итальянском, французском, немецком, английском. Картографы составляли новые варианты глобусов с новыми континентами и океанами и старались изобразить земную поверхность на плоской карте с наименьшими искажениями. Особенных успехов в этой прикладной геометрии добился фламандец Герард Кремер (по латыни его называли Меркатор). В 1559 году он предложил цилиндрическую проекцию глобуса на плоскость. Она удобна тем, что сильно искажает лишь те земли, которые (как Гренландия) лежат вблизи земных полюсов и не очень важны для мореходов.

Некоторое время Никколо Тарталья был почти непобедим в математических соревнованиях; сравниться с ним мог только Джероламо Кардано из Павии.

Мы не знаем, сколь много нового рассказал Тарталья Кардано. Но мастеру хватило этой информации для полного решения кубического уравнения; в итоге Кардано сравнялся с Тартальей в алгебраическом мастерстве.

Решение уравнений-многочленов степеней 3 и 4 стало крупным успехом новой европейской математики. Но за всякий успех приходится платить. Платой за удачи Кардано и Феррари оказалось появление МНИМЫХ чисел. Так были названы квадратные корни из отрицательных чисел. Они неизбежно возникают при решении кубического уравнения по способу Кардано, даже если такое уравнение имеет три действительных корня.

Список литературы

Гиндикин С.Г. Рассказы о физиках и математиках. М.: Наука, 1981.

Квант. 1976. №9.

Никифоровский В.А. В мире уравнений. М.: Наука, 1987.

Никифоровский В.А., Фрейман Л.С. Рождение новой математики. М.: Наука, 1976.