6. Вывести формулу Герона-Архимеда для вычисления площади треугольника ABC: S2DABC = p(p-a)(p-b)(p-c) (обозначения из леммы 1 последнего параграфа). Решение
7. Доказать, что точка пересечения медиан DABC, ортоцентр и центр описанной около DABC окружности лежат на одной прямой (прямая Эйлера). Решение
8. Докажите, что центр окружности Эйлера лежит на прямой Эйлера. Решение
Указания к решению задач
1. Выходя на охоту, следует вооружиться свойством II инверсии.
2. Обозначим через di,j,k расстояние от точки Ai до прямой (AjAk), проходящей через точки Aj и Ak данного множества. Предположим противное и, например, d1,2,3 - минимальное ненулевое число среди di,j,k. На прямой (A2A3) найдите точку Aj и получите противоречие с минимальностью d1,2,3.
3. Сделайте инверсию с центром в одной из точек данного множества и воспользуйтесь свойством VIII и теоремой Сильвестра.
4. Докажите сначала (например, координатным методом), что для любых двух неконцентрических окружностей w1 и w2 геометрическим множеством точек плоскости, отрезки касательных из которых к w1 и w2 равны между собой, является прямая (радикальная ось окружностей w1 и w2). Пусть теперь a - радикальная ось окружностей w1 и w2 с центрами O1 и O2 соответственно и X - точка пересечения прямых a и (O1O2). Построим окружность w3 с центром в X и радиусом равным отрезку касательной из точки X к w1. Тогда w3^w1 и w3^w2. Обозначим через O одну из точек пересечения w3 с (O1O2). Докажите теперь, что O - центр искомой инверсии (используйте лемму 2 и свойства VI и IX).
5. Переведите подходящей инверсией окружности w и w¢ в концентрические окружности.
6. Следует перемножить три равенства: 5, 6 (лемма 1) и равенство p = p.
7. При гомотетии с центром в точке пересечения медиан и коэффициентом -1/2 ортоцентр треугольника ABC перейдет в ортоцентр треугольника A¢B¢C¢, составленного из средних линий исходного треугольника. Осталось заметить, что ортоцентр DA¢B¢C¢ совпадает с центром окружности, описанной около DABC. Кстати, коэффициент гомотетии одновременно указывает на отношение, в котором точка пересечения медиан делит отрезок, соединяющий ортоцентр с центром описанной окружности DABC.
8. Докажите сначала (используя свойства средних линий), что середины (точки A1, B1, C1) трех отрезков, соединяющих ортоцентр H треугольника DABC с его вершинами, лежат на окружности Эйлера. Если Oэ - центр окружности Эйлера, то относительно Oэ треугольники DA1B1C1 и DA¢B¢C¢ (A¢, B¢, и C¢ - середины сторон DABC) будут ценрально-симметричными. Отсюда сделайте вывод, что точка Oэ является серединой отрезка, соединяющего точку H с центром описанной окружности около DABC.
В следующих книгах вы можете найти дополнительную информацию по данной теме.
Список литературы
1. В.В. Прасолов. Задачи по планиметрии. Ч. 2. Гл. 28. Инверсия. М., Наука, 1986.
2. Г.С.М. Кокстер. Введение в геометрию. Гл. 6. М., Наука, 1966.
3. И.М. Яглом. Геометрические преобразования. Т. 1,2. М., Гостехиздат, 1955-56.
4. И.М. Яглом. Окружности. Энциклопедия элементарной математики. Кн. IV. М., Гостехиздат, 1963.
Сноски:
1 Задача Фаньяно: в данный треугольник вписать треугольник наименьшего периметра.
2 Точкой Ферма остроугольного треугольника ABC называется точка M, для которой сумма |MA|+|MB|+|MC| принимает наименьшее значение.
3 Л. Маскерони(1750-1800), итальянский инженер, изучал математику самостоятельно. Работы относятся к теории геометрических построений, теории многоугольников, интегральному исчислению. Результаты его геометрических исследований доложил в 1797 году на заседании Национального института Наполеон Бонапарт.
4 Аполлоний(2-я половина 3 в.- 1-я половина 2 в. до н.э.). Родился в Перге (Малая Азия). Главный его труд "Конические сечения" сохранился не полностью (первые четыре книги) в оригинале, частично (три последующие книги) в арабском переводе, восьмая книга утеряна. Исследуя свойства конических сечений, их диаметров, фокусов, нормалей и касательных, пользовался проективно-геометрическими методами.
5 Круговым называется такое преобразованием множества aÈ{¥} (a - плоскость и ¥ - бесконечно удаленная точка), при котором каждая обобщенная окружность (т.е. окружность или прямая плоскости a) отображается на обобщенную окружность. Инверсия - частный случай кругового преобразования.
6 Л. Эйлер (1707-1783), математик, механик, физик и астроном. Родился в Базеле. С 1726 по 1741 и с 1766 являлся академиком Петербургской АН. Список трудов Эйлера содержит более 850 названий. Основные работы относятся к вариационному исчислению, интегрированию обыкновенных дифференциальных уравнений, степенным рядам, дифференциальной геометрии, теории чисел, небесной механике, оптике, гидродинамике. В конце 1766 года почти полностью потерял зрение, но, продолжая интенсивно работать, за 17 лет подготовил около 400 научных работ.
7 в случае, если треугольник ABC является тупоугольным.