|A¢C¢|
|B¢C¢|:|A¢D¢|
|B¢D¢|= |AC|/(|OA|·|OC|)
|BC|/|OB|·|OC|:|AD|/(|OA|·|OD|)
|BD|/(|OB|·|OD|)=
= |AC|
|BC|:|AD|
|BD|.
Следующая теорема является решением проблемы H.
Теорема. Пусть даны точки A, B и число k > 0 (k ¹ 1). Множество F состоит из всех таких точек X плоскости, для которых |XA|:|XB| = k. Тогда F является окружностью (окружность Аполлония), центр которой лежит на прямой (AB).
Доказательство. На прямой (AB) можно легко найти две точки O и C, принадлежащие множеству F (одна из них будет внутренней точкой отрезка [AB], другая - внешней точкой этого отрезка). Рассмотрим инверсию относительно окружности с центром в точке O произвольного радиуса R. Для образов точек A, B и C имеем
|C¢A¢|
|C¢B¢|= |CA|R2/(|OC|·|OA|)
|CB|R2/(|OC|·|OB|)= |CA|
|CB|:|OA|
|OB|= k:k = 1. 1
Пусть X¢ = invOR(X) и F¢ = invOR(F). Тогда, учитывая (1) и сохранение при инверсии отношения четырех точек, получаем
X ÎFÛ|XA|
|XB|:|CA|
|CB|= k:k = 1Û
Û|X¢A¢|
|X¢B¢|:|C¢A¢|
|C¢B¢|= 1Û|X¢A¢|
|X¢B¢|= 1.
Последнее означает, что F¢ - серединный перпендикуляр к отрезку [A¢B¢]. Отсюда F = invOR(F¢) - окружность, диаметр которой лежит на прямой (AB).
Формула следующей теоремы, названная в честь Леонарда Эйлера6, связывает между собой радиусы вписанной и описанной окружностей произвольного треугольника с расстоянием между их центрами.
Теорема. Пусть для произвольного треугольника ABC числа r, R и d соответственно обозначают радиусы вписанной и описанной окружностей и расстояние между их центрами. Тогда d2 = R2-2Rr.
Доказательство. Точки касания вписанной окружности w(O,r) со сторонами [AB], [AC] и [BC] обозначим соответственно через K, L и M (рис. 11).
Рис. 11
Пусть также w1(O1,R) - описанная около треугольника DABC окружность. Рассмотрим инверсию относительно вписанной окружности w(O,r). Так как прямые (AK) и (AL) являются касательными к окружности инверсии, образом точки A будет середина отрезка [KL] (точка A¢), аналогично B¢ = invOr (B) - середина [KM] и C¢ = invOr (C) - середина [LM]. Образом окружности w1(O1,R) будет окружность w1¢, проходящая через точки A¢,B¢,C¢ и имеющая радиус равный r/2 (так как при гомотетии HO-1/2 окружность w переходит в окружность, проходящую через середины сторон DKLM, т.е. в w1¢). Теперь попробуем выяснить, как вообще изменяется радиус окружности при инверсии. Обозначим через X и Y точки диаметра окружности w1(O1,R), лежащие на прямой (OO1) (рис. 12).
Рис. 12
По свойству IX отрезок [invOr(X) invOr (Y)] является диаметром окружности
invOr (w1), а по свойству V его длина равна
|X¢Y¢| = |XY|
|OX|·|OY|·r2 = 2Rr2
|R-d|·|R+d|= 2Rr2
R2-d2.
Учитывая, что |X¢Y¢| = 2R¢, где R¢ - радиус окружности invOr(w1), получаем формулу
R¢ = Rr2
R2-d2.
Возвращаясь к образу описанной окружности при инверсии относительно w(O,r), имеем
r
2= Rr2
R2-d2ÞR2-d2 = 2RrÞd2 = R2-2Rr.
Закончим этот параграф одним совершенно неожиданным результатом. Сначала напомним некоторые определения и факты. Окружностью Эйлера треугольника ABC называется окружность, проходящая через середины его сторон. На этой окружности также лежат основания высот DABC и середины трех отрезков, соединяющих ортоцентр этого треугольника (т.е. точку пересечения его высот или их продолжений7) с вершинами. Поскольку на окружности Эйлера лежат девять точек, естественно связанных с треугольником ABC, ее называют еще окружностью девяти точек. Вневписанной окружностью треугольника ABC называется окружность, касающаяся стороны этого треугольника и продолжений двух других его сторон. В следующей лемме перечисляются некоторые свойства вневписанной окружности.
Лемма 1. Пусть |AB| = c, |AC| = b, |BC| = a, p - полупериметр DABC, O1 и Oa - центры вписанной (w1) и вневписанной (wa) окружностей (рис. 13), r1 и ra - их радиусы, X и Xa - точки касания этих окружностей со стороной [BC], K и L - с прямой (AC), M и N - с прямой (AB). Пусть также (B1C1) - общая внутренняя касательная к w1 и wa, отличная от (BC). Тогда
|AL| = p;
|AK| = p-a, |CK| = p-c, |BX| = p-b;
|BX| = |CXa|;
|BC1| = |B1C| = |b-c|;
pr1 = ra(p-a);
r1ra = (p-b)(p-c).
Рис. 13
Доказательство. 1) Следует из 2|AL| = |AL|+|AN| = (|AC|+|CXa|)+(|AB|+|BXa|) = 2p.
2) Первое равенство получается из 2|AK| = |AK|+|AM| = (|AC|-|CX|)+(|AB|-|BX|) = 2p-2a. Остальные доказываются аналогично.
3) Из 2) и 1) имеем |BX| = p-b = |AL|-|AC| = |CL| = |CXa|.
4) При симметрии относительно биссектрисы [AOa) угла ÐBAC окружности w1 и wa остаются неподвижными и отрезок [BC] одной внутренней касательной переходит в отрезок [B1C1] другой внутренней касательной. Отсюда |BC1| = |B1C| и |C1N| = |CL|. Из последнего равенства в предположении b > c получаем |BC1| = |AN|-|AB|-|CL| = p-c-(p-b) = b-c.
5) Следует из 1) и 2) и из подобия треугольников DAO1K и DAOaL.
6) Следует из 1) и 2) и из подобия треугольников DKO1C и DLCOa.
Лемма доказана.
Лемма 2. Для окружностей w(O,R) и w1(O1,R1) условие invOR(w1) = w1 выполнено тогда и только тогда, когда w^w1.
Доказательство. Пусть invOR(w1) = w1, wÇw1 = {A,B} и w1Ç(OO1) = {X,Y}. Тогда invOR(X) = Y. Отсюда |OX|·|OY| = R2 = |OA|2. Поэтому (OA) - касательная к окружности w1. Что означает (OA)^(O1A) и w^w1.
Предположим теперь, что w^w1. Обозначим через w2 = invOR(w1). Из свойства X получаем w2^w. Поскольку существует единственная окружность, проходящая через A и B (по-прежнему, {A,B} = wÇw1) и перпендикулярная w, w2 = w1. Лемма доказана.
Теорема (Фейербах). Окружность Эйлера треугольника ABC касается вписанной и трех вневписанных окружностей этого треугольника.
Доказательство. Сохраним некоторые обозначения леммы 1. Середины сторон треугольника обозначим через A¢, B¢ и C¢ (рис. 14). На отрезке [XXa] как на диаметре построим окружность w. Из леммы 1 сразу получаем, что точка A¢ будет центром w (так как |BX| = |CXa|), а ее радиус R = |XXa|/2 = (a-2|BX|)/2 = (b-c)/2 (далее предполагаем, что b ³ c). Рассмотрим симметрию относительно w. Из условий w1^w и w1^w и из леммы 2 заключаем, что invOR(w1) = w1 и invOR(wa) = wa. Чтобы найти образ окружности Эйлера (wэ) при инверсии относительно w введем дополнительные обозначения.
Рис. 14
Пусть S - общая точка биссектрисы [AOa) и прямых (BC) и (B1C1). Тогда |SC| = ab/(b+c) и |SB| = ac/(b+c). Отсюда
|SA¢| = (|SC|-|SB|)/2 = a
2·b-c
b+c.
Пусть также точки B¢¢ и C¢¢ являются соответственно пересечением касательной (B1C1) с прямыми (A¢B¢) и (A¢C¢). Из подобия треугольников DSA¢B¢¢ и DSBC1 получаем
|A¢B¢¢| = |BC1|·|SA¢|
|SB|= (b-c)·a
2·b-c
b+c
a·c
b+c
= (b-c)2
2c.
Поскольку |A¢B¢| = c/2,
|A¢B¢|·|A¢B¢¢| = (b-c)2/4 = R2. (1)
Рассматривая подобные треугольники DA¢SC¢¢ и DCSB1 приходим к
|A¢C¢¢| = |B1C|·|SA¢|
|SC|= (b-c)·a
2·b-c
b+c
a·b
b+c
= (b-c)2
2b.
Отсюда
|A¢C¢¢|·|A¢C¢| = (b-c)2
2b·b
2= R2. (2)
Равенства (1) и (2) означают, что invOR(B¢) = B¢¢ и invOR(C¢) = C¢¢. Поэтому
invOR(wэ) = (B¢¢C¢¢) = (B1C1) и wэ касается invOR(w1) = w1 и invOR(wa) = wa. Аналогично доказывается, что wэ касается оставшихся двух вневписанных окружностей. Теорема доказана.
Нетрудно заметить, что окружность Эйлера wэ треугольника ABC является окружностью Эйлера для каждого из следующих треугольников: DHAB, DHAC, DHBC (H - ортоцентр DABC). Каждый из этих треугольников имеет свою вписанную и три вневписанные окружности. Таким образом, теорема Фейербаха приводит к фантастическому результату: окружность Эйлера треугольника ABC касается по крайней мере шестнадцать окружностей, естественно определенных этим треугольником.
В заключение приведем небольшой список задач для самостоятельного решения. Если какая-либо задача не решается в течение 497 секунд, разрешено посмотреть указание к решению задачи.
Задачи
1. Где-то в пустыне находится лев. Требуется загнать его в круглую клетку (будьте осторожны с выбором своего местоположения).Решение
2. Пусть на плоскости дано конечное множество точек, причем прямая, проходящая через любые две точки этого множества, содержит также третью точку этого множества. Докажите, что все точки данного множества лежат на одной прямой (теорема Сильвестра).Решение
3. На плоскости дано конечное множество точек, причем никакие три из них не лежат на одной прямой, и окружность, проходящая через любые три данные точки, содержит еще одну точку этого же множества. Докажите, что тогда все данные точки лежат на одной окружности.Решение
4. Докажите, что для любых двух непересекающихся окружностей w1 и w2 найдется инверсия, которая переведет их в концентрические окружности w1¢ и w2¢. Решение
5. Даны две непересекающиеся окружности w и w¢, причем w лежит внутри w¢. Окружность w1, одновременно касающаяся w и w¢, обладает свойством Штейнера, если найдется такая цепочка окружностей w1,..., wn, касающихся w и w¢ и таких, что wi касается wi+1 для i < n и wn касается w1. Докажите, что если для окружностей w и w¢ найдется хотя бы одна окружность, обладающая свойством Штейнера, то и любая окружность S1, касающаяся w¢ внутренне и w внешне, обладает свойством Штейнера (поризм Штейнера). Решение