Теперь, очевидно, мы можем, заключить, что в целом при пересчете но циклу, соответствующему свободному неизвестному
Так, например, для цикла
Значит, пересчет по этому циклу снижает расходы. И действительно, осуществив такой пересчет, мы получаем план, по которому объем перевозок в тонно-километрах составляет
тогда как по исходному плану он составил
Вычисление алгебраической суммы тарифов для каждого из свободных неизвестных можно производить без построения соответствующего цикла, пользуясь, так называемыми, потенциалами. Припишем каждой базе
так что
где
Зная потенциалы, легко вычислить алгебраическую сумму тарифов. Действительно, если в алгебраической сумме тарифов по циклу, соответствующему свободному неизвестному
Так, например, для цикла
Для базисных клеток сумма потенциалов строки и столбца, в которых находится эта клетка, равна тарифу, соответствующему этой клетке; если же клетка для неизвестного
называют косвенным тарифом этой клетки. Следовательно, алгебраическая сумма тарифов для свободной клетки
Из (4.3) следует, что если косвенный тариф для данной свободной клетки больше её истинного тарифа, то алгебраическая сумма тарифов по циклу, соответствующему этой клетке, будет отрицательна; если же косвенный тариф меньше истинного, то алгебраическая сумма тарифов положительна, и, наконец, если косвенный тариф равен истинному, то алгебраическая сумма тарифов равна нулю.
Потенциалы можно найти из системы равенств (4.1), рассматривая их как систему
Например, для плана, полученного по диагональному методу в рассмотренной выше задаче, имеем
Система содержит семь уравнений с восемью неизвестными. Выбирая произвольно значение
Положив, например,
Найдем теперь косвенные тарифы для свободных клеток и сравним их с истинными тарифами:
Для клеток с неизвестными
Значение
Замечание 1. Подсчитывая косвенные тарифы как суммы соответствующих потенциалов, полезно не пропускать и клетки с базисными неизвестными (заполненные клетки). Для этих клеток сумма потенциалов равна истинному тарифу; последнее может служить проверкой правильности найденных значении потенциалов.
Замечание 2. Можно показать, что если сумму всех затрат по данному плану перевозок выразить через свободные неизвестные [для этого надо исключить базисные неизвестные из выражения для S, см. формулу (2.4)], то коэффициент при каждом из таких неизвестных будет равен алгебраической сумме тарифов по циклу, соответствующему ей в таблице перевозок. Это еще раз подтверждает, что пересчет по циклам является специфической формой применения симплекс-метода к решению транспортной задачи.
Критерий оптимальности базисного решения транспортной задачи. Методы отыскания оптимального решения.