Требуется в области допустимых решений системы уравнений (2.1) и (2.1.1) найти решение, минимизирующее линейную функцию (2.4).
Таким образом, мы видим, что транспортная задача является задачей линейного программирования. Для ее решения применяют также симплекс-метод, но в силу специфики задачи здесь можно обойтись без симплекс-таблиц. Решение можно получить путем некоторых преобразований таблицы перевозок. Эти преобразования соответствуют переходу от одного плана перевозок к другому. Но, как и в общем случае, оптимальное решение ищется среди базисных решений. Следовательно, мы будем иметь дело только с базисными (или опорными) планами. Так как в данном случае ранг системы ограничений-уравнений равен
то среди всех неизвестных выделяется базисных неизвестных, а остальные · неизвестных являются свободными. В базисном решении свободные неизвестные равны нулю. Обычно эти нули в таблицу не вписывают, оставляя соответствующие клетки пустыми. Таким образом, в таблице перевозок, представляющей опорный план, мы имеем
заполненных и · пустых клеток.Для контроля надо проверять, равна ли сумма чисел в заполненных клетках каждой строки таблицы перевозок запасу груза на соответствующей базе, а в каждом столбце — потребности заказчика [этим подтверждается, что данный план является решением системы (2.1)].
Замечание 1. Не исключаются здесь и вырожденные случаи, т. е. возможность обращения в нуль одной или нескольких базисных неизвестных. Но эти нули в отличие от нулей свободных неизвестных вписываются в соответствующую клетку, и эта клетка считается заполненной.
Замечание 2. Под величинами
, очевидно, не обязательно подразумевать только тарифы. Можно также считать их величинами, пропорциональными тарифам, например, расстояниями от баз до потребителей. Если, например, выражены в тоннах, а в километрах, то величина , определяемая формулой (2.4), является количеством тонно-километров, составляющих объем данного плана перевозок. Очевидно, что затраты на перевозки пропорциональны количеству тонно-километров и, следовательно, будут минимальными при минимуме S. В этом случае вместо матрицы тарифов мы имеем матрицу расстояний.3. Методы составления начального опорного плана.
Как и в общем случае, решение транспортной задачи начинается с отыскания первого опорного плана (исходного базиса). Мы рассмотрим два наиболее распространенных метода построения такого базиса. Суть обоих этих методов состоит в том, что базисный план составляется последовательно, в несколько шагов (точнее,
шагов). На каждом из этих шагов заполняется одна клетка, притом так, что, либо полностью удовлетворяется один из заказчиков (тот, в столбце которого находится заполняемая клетка), либо полностью вывозится весь запас груза с одной из баз (с той, в строке которой находится заполняемая клетка).В первом случае мы можем исключить столбец, содержащий заполненную на этом шаге клетку, и считать, что задача свелась к заполнению таблицы с числом столбцов, на единицу меньшим, чем было перед этим шагом, но с тем же количеством строк и с соответственно измененным запасом груза на одной из баз (на той базе, которой был удовлетворен заказчик на данном шаге).
Во втором случае исключается строка, содержащая заполняемую клетку, и считается, что таблица сузилась на одну строку при неизменном количестве столбцов и при соответствующем изменении потребности заказчика, в столбце которого находится заполняемая клетка.
Начиная с первоначально данной таблицы и повторив
раз описанный шаг, мы придем к “таблице”, состоящей из одной строки и одного столбца (иначе говоря, из одной пустой клетки). Другими словами, мы пришли к задаче с одной базой и с одним потребителем, причем потребности этого единственного заказчика равны запасу груза на этой единственной базе. Заполнив последнюю клетку, мы освобождаем последнюю базу и удовлетворяем потребность последнего заказчика. В результате, совершив шагов, мы и получим искомый опорный план.Замечание. Может случиться, что уже на некотором (но не на последнем!) шаге потребность очередного заказчика окажется равной запасу груза на очередной базе. Тогда после заполнения очередной клетки объем таблицы как бы одновременно уменьшается на одни столбец и на одну строку. Но и при этом мы должны считать, что уменьшение объема таблицы происходит либо на один столбец, а на базе сохраняется “остаток” равный нулю, либо на одну строку, а у заказчика еще осталась неудовлетворенная “потребность” в количестве нуля единиц груза, которая и удовлетворяется на одном из следующих шагов. Этот нуль (“запас” или “потребностью” – безразлично) надо записать в очередную заполняемую клетку на одном из последующих шагов. Так как при этом оказывается равной нулю одна из базисных неизвестных, то мы имеем дело с вырожденным случаем.
Различие методов отыскания первого опорного плана состоит в различии способов набора заполняемой клетки.
1.Диагональный метод, или метод северо-западного угла. При этом методе на каждом шаге построения первого опорного плана заполняется левая верхняя клетка (северо-западный угол) оставшейся части таблицы. При таком методе заполнение таблицы начинается с клетки неизвестного
и заканчивается в клетке неизвестного , т. е. идет как бы по диагонали таблицы перевозок.