Математические папирусы показывают высочайшие достижения Древнего Египта в области математического знания. Однако они не дают представления о степени осмысления этого знания самими египтянами – интересовало ли их теоретическое развитие математики или же они заботились только о ее практическом применении? Кроме того, нет неоспоримых доказательств, что пропорции архитектурных сооружений, таких как пирамиды, не были результатом богатого опыта и чутья строителей, а заранее просчитывались. Но одно, несомненно: за тысячу лет до Архимеда и Пифагора египтяне открыли и успешно применяли на практике законы, вошедшие в сокровищницу античной, а затем и мировой математической мысли.
Задачи математических папирусов
Тот и Хор с "Оком Хора". Фрагмент росписи гробницы Сети I |
Среди задач математических папирусов можно выделить чисто алгебраические (№ 24-28 папируса Ринда и №1,19 и 25 Московского папируса), показывающие, что египтяне могли решать линейные уравнения с одной неизвестной х, называемой «куча» (типа ax + bx+...+cx =d), а также возводить в степень и извлекать корень.
Папирус Ринда содержит задачи на вычисление геометрической (№79) и арифметической прогрессии: «Тебе сказано разделить 10 "хекат" ячменя между 10 людьми так, чтобы разница между каждым человеком и его соседом составляла 1/8 «хекат» ячменя. Средняя доля есть 1 «хекат». Возьми 1 из 10, остаток есть 9. Составь половину разницы - это есть 1/16 «хекат». Приложи ее к средней доле. Теперь ты должен высчитать для каждого лица по 1/8 «хекат», пока не достигнешь конца» (Ринд, №64).
Египтяне также решали и геометрические задачи – вычисляли площадь треугольника, прямоугольника, круга и даже поверхности шара. Они рассчитали число ∏ - отношение длины окружности к диаметру - с точностью до 0,6% (3,16 вместо 3,14).
Математические папирусы являются свидетельством знакомства египтян со стереометрией. Описаны способы вычисления объема цилиндра, призмы и пирамиды: «Если тебе называют усеченную пирамиду 6 локтей в высоту, 4 – в нижней стороне, 2 – в верхней, вычисляй с четырех. Возводя их в квадрат, получаешь 16. Удвой 4, получишь 8. Сложи 16 с этими 8 и с этими 4. Получается 28. Вычисли 1/3 от 6. Получается 2. Вычисли 28 2 раза. Получается 56. Смотри! Он есть 56. Ты нашел правильно» (Московский папирус).
Наши познания о древнеегипетской математике основаны главным образом на двух больших папирусах математического характера и на нескольких небольших отрывках. Один из больших папирусов называется математическим папирусом Ринда (по имени обнаружившего его учёного) и находится в Лондоне. Он примерно 5,5 м длины и 0,32 ширины. Другой большой папирус , почти такой же длины и 8 см ширины, находится в Москве. Содержащиеся в них математические сведения относятся примерно к 2000 г. до н.э.
Папирус Ринда представляет собой собрание 84 задач прикладного характера. При решении этих задач производятся действия с дробями, вычисляются площади прямоугольника, треугольника, трапеции и круга, объёмы параллелепипеда, цилиндра, размеры пирамид. Имеются также задачи на пропорциональное деление, а при решении одной задачи находится сумма геометрической прогрессии.
В московском папирусе собраны решения 25 задач. Большинство их такого же типа, как и в папирусе Ринда. Кроме того, в одной из задач правильно вычисляется объём усечённой пирамиды с квадратным основанием. В другой задаче содержится самый ранний в математике пример определения площади кривой поверхности: вычисляется боковая поверхность корзины, т.е. полуцилиндра, высота которого равна диаметру основания.
При изучении содержания математических папирусов обнаруживается следующий уровень математических знаний древних египтян.
Ко времени написания этих документов уже сложилась определённая система счисления: десятичная иероглифическая. Алгоритмические числа записывались комбинациями узловых чисел. С помощью этой системы египтяне справлялись со всеми вычислениями, в которых употребляются целые числа. Что касается дробей, то египтяне создали специальный аппарат, опиравшийся на понимание дроби только как доли единицы.
Сложились также определённые приёмы производства математических операций с целыми числами и дробями. Общей для всей вычислительной техники египтян является её аддитивный характер, при котором все процедуры по возможности сводятся к сложению.
При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений.
При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян. Здесь наблюдается самое большое разнообразие приёмов. Так, иногда в качестве промежуточного действия применялось нахождение двух третей или одной десятой доли числа и т.п.
При сложении дробей, имеющих разные знаменатели, египтяне использовали умножение их на вспомогательные числа. Способы подбора этих вспомогательных чисел не дают, однако, права судить об этом приёме как о единообразном процессе, адекватном способу приведения дробей к общему знаменателю. Исторические реконструкции во многом ещё спорны и не подтверждены достаточным количеством фактов.
Материалы, содержащиеся в папирусах, позволяют утверждать , что за 20 веков до нашей эры в Египте начали складываться элементы математики как науки. Эти элементы ещё только начинают выделяться из практических задач, целиком подчинены их содержанию. Техника вычислений ещё примитивна, методы решения задач не единообразны. Однако материалов, которые позволяли бы судить о развитии математики в Египте, ещё недостаточно.
Вавилон
Источником наших знаний о вавилонской цивилизации служат хорошо сохранившиеся глиняные таблички, покрытые т.н. клинописными текстами, которые датируются от 2000 до н.э. и до 300 н.э. Математика на клинописных табличках в основном была связана с ведением хозяйства. Арифметика и нехитрая алгебра использовались при обмене денег и расчетах за товары, вычислении простых и сложных процентов, налогов и доли урожая, сдаваемой в пользу государства, храма или землевладельца. Многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ и религиозных праздников. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии.
Вавилоняне создали и систему счисления, использовавшую для чисел от 1 до 59 основание 10. Символ, обозначавший единицу, повторялся нужное количество раз для чисел от 1 до 9. Для обозначения чисел от 11 до 59 вавилоняне использовали комбинацию символа числа 10 и символа единицы. Для обозначения чисел, начиная с 60 и больше, вавилоняне ввели позиционную систему счисления с основанием 60. Существенным продвижением стал позиционный принцип, согласно которому один и тот же числовой знак (символ) имеет различные значения в зависимости от того места, где он расположен. Примером могут служить значения шестерки в записи (современной) числа 606. Однако ноль в системе счисления древних вавилонян отсутствовал, из – за чего один и тот же набор символов мог означать и число 65 (60 + 5), и число 3605 (602 + 0 + 5). Возникали неоднозначности и в трактовке дробей. Например, одни и те же символы могли означать и число 21, и дробь 21/60 и (20/60 + 1/602). Неоднозначность разрешалась в зависимости от конкретного контекста.
Вавилоняне составили таблицы обратных чисел (которые использовались при выполнении деления), таблицы квадратов и квадратных корней, а также таблицы кубов и кубических корней. Им было известно хорошее приближение числа
. Клинописные тексты, посвященные решению алгебраических и геометрических задач, свидетельствуют о том, что они пользовались квадратичной формулой для решения квадратных уравнений и могли решать некоторые специальные типы задач, включавших до десяти уравнений с десятью неизвестными, а также отдельные разновидности кубических уравнений и уравнений четвертой степени. На глиняных табличках запечатлены только задачи и основные шаги процедур их решения. Так как для обозначения неизвестных величин использовалась геометрическая терминология, то и методы решения в основном заключались в геометрических действиях с линиями и площадями. Что касается алгебраических задач, то они формулировались и решались в словесных обозначениях.Около 700 до н.э. вавилоняне стали применять математику для исследования движений Луны и планет. Это позволило им предсказывать положения планет, что было важно как для астрологии, так и для астрономии.