Смекни!
smekni.com

Исследование распределения температуры в тонком цилиндрическом стержне (стр. 2 из 3)


Выбираем доверительную вероятность =0,9 и по таблице Стьюдента находим критическое значение равное 2,35, удовлетворяющее равенству:

Доверительные интервалы для коэффициентов:

(2.4*)


В нашем случае примут вид:

2.2 Проверка статистической гипотезы об адекватности модели задачи регрессии.


Имеется выборка объёма n экспериментальных значений (xi;Ui). Предполагаем, что ошибки измерения xi пренебрежимо малы, а случайные ошибки измерения температур Ui подчинены нормальному закону с постоянной дисперсией Мы выбрали функцию регрессии в виде:

Выясним, нельзя ли было ограничиться многочленом второго порядка, т.е. функцией вида:

(2.5)


C помощью МНК можно найти оценки этих функций и несмещённый оценки дисперсии отдельного измерения Ui для этих случаев:

Где r1 = 4 (количество точек – 6, параметра – 2).


Нормальная система уравнений для определения новых оценок коэффициентов функции (2.5)с помощью МНК имеет вид:

(2.7)


Решая эту систему методом Гаусса, получим:

(2.8)

Чем лучше функция регрессии описывает эксперимент, тем меньше для неё должна быть оценка дисперсии отдельного измерения Ui, т.к. при плохом выборе функции в дисперсию войдут связанные с этим выбором дополнительные погрешности. Поэтому для того, чтобы сделать выбор между функциями U(x) и U(1)(x) нужно проверить значимость различия между соответствующими оценками дисперсии, т.е. проверить гипотезу:


Н0 – альтернативная гипотеза

Т.е. проверить, значимо ли уменьшение дисперсии при увеличении степени многочлена.


В качестве статического критерия рассмотрим случайную величину, равную:

(2.9)

имеющую распределение Фишера с(r ; r1) степенями свободы. Выбираем уровень распределения Фишера, находим критическое значение F*, удовлетворяющее равенству: p(F>F*=

В нашем случае F=349.02, а F*=10,13.


Если бы выполнилось практически невозможное соотношение F>F, имевшее вероятность 0,01, то гипотезу Н0 пришлось бы отклонить. Но в нашем случае можно ограничиться многочленом

, коэффициенты в котором неодинаковы.

3. Нахождение коэффициента теплопроводности .


Коэффициент вычислим по формуле (1.5), обозначим:

(3.1)

Определим допустимую абсолютную погрешность величины интеграла I, исходя из требования, чтобы относительная погрешность вычисления не превосходила 0,1%, т.е.:

(3.2)


Т.к. из (3.1) очевидно, что , то условие (3.2) заведомо будет выполнено, если:

(3.3)

Т.е. в качестве предельно допустимой абсолютной погрешности вычисления интеграла I возьмём 0,001Т (3.4)

Т=218 оС, следовательно, 0,218 оС.

3.1 Вычисление интеграла I методом трапеции

Использование теоретической оценки погрешности


Для обозначения требуемой точности количества частей n, на которые нужно разбить отрезок интегрирования [0;T] определяется по формуле:

, где M[f”(t)], te [0;T], f(t)=e-bt3


Учитывая формулу (3.4) получаем:

(3.5)


Дифференцируя f(t), получим:

А необходимое условие экстремума: f”(t)-f’’’(t)=0, откуда получаем:

Далее вычисляем значения f’’(t) при t=t1, t=t2, t=0 и t=T, получаем:

f’’(t1)=1.5886 10-4

f’’(t2)=-1.6627 10-4

f’’(0)=0

f’’(T)=7.4782 10-6

Итак: M1,5886 10-4, откуда n=25.66; принимаем N=26.


Далее вычислим интеграл I:

Погрешность вычисления :


3.2 Вычисление интеграла I методом парабол


При расчётах будем использовать теоретическую оценку погрешности с помощью правила Рунге. Для обеспечения заданной точности количество частей n, на которое следует разделить интервал интегрирования можно определить по формуле:

, откуда:

Нахождение М4 можно провести аналогично нахождению М2 в предыдущем пункте, но выражение для fIV(t) имеет довольно громоздкий вид. Поэтому правило Рунге – наиболее простой способ.

Обозначим через In и I2n значение интеграла I, полученное при разбиении промежутка интегрирования соответственно на n и 2n интервалов. Если выполнено равенство: |I2n-In| = 15, то |I-I2n|=


Будем , начиная с n=2, удваивать n до тех пор, пока не начнёт выполняться неравенство (*1), тогда:

(3.6)


Согласно формуле парабол (3.7):

Результаты вычислений сведём в таблицу:

n In I2n
4 102.11
8 101.61 0.5017

По формуле (3.7) I = 101,61 что в пределах погрешности совпадает со значением, полученным по методу трапеций

n=8 n=4
ti (8) y8 ti (4) y4
0 1 0 1
27.25 0.9864
54.5 0.8959 54.5 0.8959
81.75 0.6901
109 0.4151 109 0.4151
136.25 0.1796
163.5 0.0514 163.5 0.0514
190.75 0.0089874
218 0.00088179 218 0.00088179

4. Вычисление времени Т0 установления режима

4.1 Решение уравнения комбинированным методом

Время установления режима определяется по формулам (1.6) и (1.7).

Проведём сначала отделение корней. Имеем y = ctg(x) и y = Ax. Приведём уравнение к виду: Axsin(x)-cos(x) = 0. Проведём процесс отделения корня.

F(x) -1 -0.6285 0.4843
x 0.01 0.05 0.1

т.е. с [0.01;0.05]