Для определения параметров уравнения регрессии, выраженного степенной функцией
, приводят функцию к линейному виду: lg = lga0 + a1lgx, отсюда система уравнений для определения параметров запишется:n∙lga0 + a1∑lgx = ∑lgy;
lga0∑lgx + a1∑(lgx)2 = ∑lgy∙lgx.
Зависимость между тремя и более факторами называется множественной или многофакторной корреляционной зависимостью. Линейная связь между тремя факторами выражается уравнением:
= a0 + a1x + a2z,а система нормальных уравнений для определения неизвестных параметров a0, a1, a2 будет следующей:
na0 + a1∑x + a2∑z = ∑y;
a0∑x + a1∑x2 + a2∑zx = ∑yx;
a0∑z + a1∑xz + a2∑z2 = ∑yz.
Теснота связи между тремя факторами измеряется с помощью множественного (совокупного) коэффициента корреляции:
R =
,где rij - парные коэффициенты корреляции между соответствующими факторами.
Для более углубленного анализа вычисляются частные коэффициенты корреляции.
Дисперсионный анализ связи. При небольшом числе наблюдений исследовать влияние одного или нескольких факторных признаков на результативный можно, используя методы дисперсионного анализа. Дисперсионный анализ проводится расчетом дисперсий: общей, межгрупповой и внутригрупповой. Общую дисперсию называют дисперсией комплекса, межгрупповую - факторной, внутригрупповую - остаточной.
Дисперсионный анализ заключается в сравнении факторной и остаточной дисперсий. Если различие между ними значимо, то факторный признак, т.е. признак, положенный в основание группировки, оказывает существенное влияние на результативный. При исследовании воздействия на результативный признак только одного факторного, т.е. однофакторного комплекса дисперсии вычисляются:
дисперсия комплекса
;факторная дисперсия
;остаточная дисперсия
,где n – 1, r – 1, n – r - соответствующие числа степеней свободы;
r - число уровней (групп).
На основании дисперсий проводится расчет критерия Фишера Fp. Если расчетное значение больше табличного, т.е. Fp>Fa, то существенность влияния факторного признака подтверждается.
Тема 10. Выборочное наблюдение
Главными вопросами теории выборочного наблюдения, требующими практического закрепления на основе решения задач и выполнения упражнений, являются:
- определение предела случайной ошибки репрезентативности для различных типов выборочных характеристик с учетом особенностей отбора;
- определение объема выборки, обеспечивающего необходимую репрезентативность выборочной характеристики, с учетом особенностей отбора.
Ошибка репрезентативности, или разность между выборочной и генеральной характеристикой (средней, долей), возникающая в силу несплошного наблюдения, в основе которого лежит случайный отбор, рассчитывается как предел наивероятной ошибки. В качестве уровня гарантийной вероятности обычно берется 0,954 или 0,997. Тогда предел ошибки определяется величиной удвоенной или утроенной средней ошибки выборки: D = 2m при P = 0,954; D = 3m при P = 0,997, или в общем виде D = tm (t - коэффициент, связанный с вероятностью, гарантирующей результат).
Величина средней ошибки выборки различна для отдельных разновидностей случайного отбора. При наиболее простой системе - собственно-случайном повторном отборе - средняя ошибка определяется следующими формулами:
индивидуальный отбор:
m =
= ,где σ2 - общая дисперсия признака;
n - число отобранных единиц наблюдения;
групповой (гнездовой, серийный) отбор:
m =
= ,где δ2 - межгрупповая дисперсия;
r - число отобранных групп (гнезд, серий) единиц наблюдения.
При практических расчетах ошибок репрезентативности необходимо учитывать следующее:
1. Вместо генеральной дисперсии используется соответствующая выборочная дисперсия. Так, вместо общей дисперсии доли в генеральной совокупности берется общая дисперсия частости:
= w(1 – w) вместо = pq.2. В случае бесповторного способа отбора (а также механического) следует иметь в виду поправки (K) к ошибке повторной выборки на бесповторность отбора:
K =
< 1 или K = < 1.Очевидно, что пользоваться этой поправкой целесообразно лишь тогда, когда относительный объем выборки составляет заметную часть генеральной совокупности (не менее 10%, тогда K £ 0,95).
3. При районированном отборе из типических групп единиц генеральной совокупности используется средняя из частных (групповых) дисперсий. Так, при индивидуальном отборе, пропорциональном размерам типических групп, имеем:
D = 2m =
= при P = 0,954,где
- частная дисперсия i-й группы;ni - объем выборки в i-й группе.
Определение ошибок выборочных характеристик позволяет установить наивероятные границы нахождения соответствующих генеральных показателей:
для средней:
,где
- генеральная средняя; - выборочная средняя; - ошибка выборочной средней;для доли: p = w±Dw,
где p - генеральная доля;
w - выборочная доля (частость);
Dw - ошибка выборочной доли.
Пример. С вероятностью 0,954 нужно определить границы среднего веса пачки чая для всей партии, поступившей в торговую сеть, если контрольная выборочная проверка дала следующие результаты (первые две графы табл. 10.1).
Таблица 10.1
Результаты взвешивания чая
Вес, г (x) | Количество пачек (m) | Расчетные графы | |||
x¢ | m¢ | x¢m¢ | (x¢)2m¢ | ||
48 - 49 | 20 | -1 | 2 | -2 | 2 |
49 - 50 | 50 | 0 | 5 | 0 | 0 |
50 - 51 | 20 | +1 | 2 | 2 | 2 |
51 - 52 | 10 | +2 | 1 | 2 | 4 |
Итого: | 100 | – | 10 | 2 | 8 |
1. Средний вес пачки чая по выборке:
= ´K + x0 = ´ 1 + 49,5 = 49,7 г.2. Выборочная дисперсия веса пачки чая:
σ2 =
= = 0,76.3. Средняя ошибка выборочной средней:
= = = 0,087 г.4. Предел для ошибки с вероятностью 0,954:
D = 2m = 0,174 г » 0,2 г.
5. Границы генеральной средней:
= ±D = 49,7 ± 0,2 г.Таким образом, с вероятностью 0,954 можно утверждать, что вес пачки чая в среднем для всей партии не более 49,9 г и не менее 49,5 г.
Определение объема выборки при заданной ее точности является проблемой, обратной рассмотренной нами - определению ошибки выборки при данном ее объеме. Формула объема выборки получается из соответствующей формулы предельной ошибки. Так, получаем для индивидуального бесповторного отбора:
n =
;группового бесповторного отбора:
r =
.При решении задач на определение необходимого объема выборки следует иметь в виду, что вместо генеральной дисперсии определенного вида берется ее оценка - примерное значение, полученное из того или иного источника. Рассмотрим следующий общий пример.
Пример. Нужно определить абсолютный и относительный объемы индивидуального отбора для исследования генеральной доли, чтобы ошибка частости с вероятностью 0,954 не превышала 0,02, если выборка производится из генеральной совокупности объема: а) 1000; б) 100000 единиц.