Для изображения интервальных вариационных рядов с равными интервалами на оси абсцисс откладывают границы интервалов, а на оси ординат - число единиц совокупности в данном интервале. Строят прямоугольники с равными интервалами.
Интервальный вариационный ряд можно изображать также в виде кумуляты. На оси абсцисс откладывают границы интервалов, на оси ординат - нарастающие частоты, соответствующие верхним границам интервалов. Точки пересечения соединяют отрезками прямой.
Статистические ряды как результат статистической сводки и группировки всегда излагаются в виде статистических таблиц.
Статистическая таблица представляет собой форму наиболее рационального, наглядного и систематизированного изложения цифровых результатов сводки и обработки статистического материала.
При построении статистических таблиц следует четко разграничивать статистическое подлежащее и статистическое сказуемое. Статистическим подлежащим таблицы является сам объект (перечень его единиц или их групп), который характеризуется числовыми показателями. Статистическим сказуемым таблицы являются числовые показатели, которые характеризуют изучаемый объект.
Статистическое подлежащее располагают, как правило, в строках, статистическое сказуемое - в графах таблицы.
В зависимости от строения подлежащего различают три вида таблиц: простые, групповые, комбинационные.
Простые (перечневые) таблицы в подлежащем содержат перечень рассматриваемых объектов.
Групповые таблицы в подлежащем содержат группировку единиц изучаемого объекта, образованную по какому-либо одному признаку.
Комбинационные таблицы в подлежащем содержат группировку единиц, образованную по двум и более признакам.
При построении таблиц следует строго придерживаться определенных правил:
1. Каждая таблица должна быть пронумерована и иметь заголовок, который в краткой форме должен отражать содержание таблицы, место и время явления.
2. В таблице используются только общепринятые сокращения.
3. В таблице должны быть приведены единицы измерения. Если единица измерения общая, она выносится справа над таблицей в скобках.
4. Цифровые данные целесообразно сокращать.
5. К таблице можно делать примечания, которые располагают под таблицей со сноской под чертой.
6. При переносе таблицы на другой лист, графы таблицы целесообразно обозначать арабскими цифрами.
Тема 3. Графическое изображение статистических данных
Графиками в статистике называют условные изображения числовых величин и их соотношений в виде различных геометрических фигур в системе прямоугольных координат.
Графики являются средством обобщения и анализа статистических данных. С помощью графиков выявляются основные тенденции развития экономических явлений и взаимные связи между явлениями.
Статистические графики различают по содержанию и способу построения.
По содержанию изображаемых статистических показателей графики делят на следующие виды: 1) графики сравнения; 2) графики структуры; 3) графики динамики; 4) графики выполнения плана; 5) графики взаимосвязанных показателей.
По способу построения различают столбиковые, ленточные, линейные, круговые, квадратные, секторные диаграммы.
Для построения графиков сравнения целесообразно использовать линейную, столбиковую, ленточную, квадратную, круговую диаграммы.
Столбиковая диаграмма изображается в виде столбиков, основания которых откладываются на оси абсцисс, высота - на оси ординат. Ширина столбиков произвольная, но одинаковая.
Линейная диаграмма изображается в виде линии, соединяющей точки пересечения расчетных величин в ряде динамики.
Ленточную диаграмму целесообразно строить в том случае, если объект характеризуется двумя показателями, как правило, противоположными по смыслу. В ленточной диаграмме в отличие от столбиковой столбики расположены не вертикально, а горизонтально в системе прямоугольных координат.
Квадратную диаграмму целесообразно строить в том случае, когда между сравниваемыми показателями разница настолько велика, что установление подходящего масштаба оказывается затруднительным. Сторона каждого квадрата определяется как корень квадратный из соответствующей величины. Тогда площадь квадратов визуально будет характеризовать ту или иную исходную величину.
Круговые диаграммы строятся аналогично квадратам. Радиус круга есть корень квадратный из определенной величины.
Для построения графиков структуры, как правило, используют столбиковые и секторные диаграммы.
Особенностью построения секторной диаграммы является то, что объем круга в секторной диаграмме принимается за 100 процентов, а величины секторов пропорциональны процентному отношению составных частой к их общему итогу.
Построение графиков динамики осуществляется, как правило, с помощью столбиковой или линейной диаграмм.
Графическое изображение показателей выполнения плана можно осуществить в виде линейной, ленточной и столбиковой диаграмм в системе прямоугольных координат. При этом на оси абсцисс откладывают периоды динамики, на оси ординат - показатели выполнения плана.
Для графического изображения показателей выполнения плана часто используют числовые сетки с двумя сопряженными шкалами. Одна шкала характеризует выполнение плана в абсолютных величинах, другая - в относительных величинах (проценты выполнения плана). Числовые сетки используют для характеристики выполнения планового задания за период динамики либо в разрезе цехов и участков.
Построение графиков взаимосвязанных показателей, один из которых равен произведению двух других, можно осуществлять с помощью так называемых "знаков Варзара". "3нак" строится вне системы прямоугольных координат в виде прямоугольника, основание которого пропорционально одному показателю - сомножителю, высота - другому.
При построении графиков (диаграмм) в системе прямоугольных координат необходимо придерживаться следующих правил:
1. Каждый график должен иметь название, которое располагают под ним. В названии в краткой форме следует отразить содержание, место и время явления. Все графики нумеруются.
2. Оси координат должны быть названы и иметь единицы измерения.
3. На числовой оси следует откладывать только целые числа и в равном масштабе (например: 20; 40; 60 и т.д., или 1500; 3000; 4500 и т.д.). Заканчиваться числовая ось должна той величиной, которая немногим больше максимальной величины в исходной совокупности.
4. Если на одной числовой оси необходимо расположить величины, относящиеся к одному и тому же явлению, но резко отличающиеся друг от друга по абсолютному значению, числовую ось можно разорвать знаком (≈), что означает разрыв масштаба.
5. Если необходимо отразить на одном графике (в одной системе прямоугольных координат) два-три явления, то вводят столько же дополнительных числовых осей (осей ординат). Каждая числовая ось должна иметь свою размерность и свой масштаб.
Тема 4. Абсолютные и относительные статистические величины
Под абсолютными величинами в статистике понимают показатели, которые характеризуют размеры (уровни, объемы) изучаемых экономических явлений.
Абсолютные величины являются исходной базой статистического анализа.
В отличие от абсолютных величин относительные величины являются величинами производными и рассчитываются на основе абсолютных.
В статистическом анализе используют следующие виды относительных величин: величины динамики, величины выполнения плана, величины структуры, величины координации, величины интенсивности, величины сравнения.
При изучении относительных величин динамики необходимо, прежде всего, уяснить их роль в характеристике развития явления во времени. Следует обратить внимание на характер базы сравнения (постоянная, переменная).
Приведем пример расчета относительных величин динамики (табл. 4.1).
Таблица 4.1
Выпуск товарной продукции на предприятии
Месяц | Тыс. руб. | Относительная величина динамики с постоянной базой сравнения | Относительная величина динамики с переменной базой сравнения | ||
в коэффициентах | в процентах | в коэффициентах | в процентах | ||
Январь | 1390,7 | 1,000 | 100,0 | – | – |
Февраль | 1426,9 | 1,026 | 102,6 | 1,026 | 102,6 |
Март | 1492,6 | 1,073 | 107,3 | 1,046 | 104,6 |
Апрель | 1547,5 | 1,113 | 111,3 | 1,037 | 103,7 |
Вычислим относительные величины динамики с постоянной базой сравнения, приняв за базу январь: 1426,9 : 1390,7 = 1,026 ´ 100 = 102,6%; 1492,6 : 1390,7 = 1,073 ´ 100 = 107,3% и т.д.
Вычислим относительные величины динамики с переменной базой сравнения, используя соотношения каждого последующего месяца к предыдущему: 1426,9 : 1390,7 = 1,026; 1492,6 : 1426,9 = 1,046 ´ 100 = 104,6% и т.д.
При вычислении относительных величин структуры следует уяснить их связь с группировкой статистических данных.
Приведем пример расчета (табл. 4.2).
Таблица 4.2
Распределение рабочих по тарифным разрядам
Тарифный разряд | Число рабочих в цехе | |
человек | в процентах к итогу | |
1 | 3 | 1,5 |
2 | 12 | 6,1 |
3 | 63 | 32,0 |
4 | 68 | 34,5 |
5 | 34 | 17,3 |
6 | 17 | 8,6 |
Итого: | 197 | 100,0 |
Для характеристики структуры рабочих по тарифным разрядам (в процентах) определяют удельный вес численности рабочих по соответствующим разрядам в общей численности рабочих. Так, удельный вес численности рабочих 1 разряда составляет (3 : 197) ´ 100 = 1,5% и т.д. (см. табл. 4.2).
При вычислении относительных величин координации за базу сравнения принимается какая-либо одна часть изучаемого явления, а остальные части соотносятся с ней.