1. Зависимости одной переменной от другой называют функциональными зависимостями.
2. Зависимость переменной у от переменной х называют функцией, если каждому значению х соответствует единственное значение у. При этом используют запись у = f (х).
3. Переменную х называют независимой переменной или аргументом, а переменную у - зависимой переменной. Говорят, что у является функцией от х.
4. Значение у, соответствующее заданному значению х, называют значением функции.
5. Все значения, которые принимает независимая переменная, образуют область определения функции; все значения, которые принимает зависимая переменная, образуют множество значений функции.
6. Для функции f приняты обозначения: D ( f ) -область определения функции, E ( f ) - множество значений функции, f (х0) - значение функции в точке х0.
7. Если D ( f ) Ì R и E ( f ) Ì R, то функцию называют числовой.
8. Элементы множества D ( f ) также называют значениями аргумента, а соответствующие им элементы E ( f ) - значениями функции.
9. Если функция задана формулой и область определения функции не указана, то считают, что область определения состоит из всех значений независимой переменной, при которых эта формула имеет смысл.
10. Графиком функции называют множество всех точек, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.
Затем, на следующих уроках, происходит детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры - идет усвоение нового материала.
Методика изучения прямой и обратной пропорциональной зависимости
Введение понятий прямой и обратной пропорциональной зависимости является важным шагом на пути к введению понятия функциональной зависимости и в дальнейшем к изучению линейной и обратной функций. Используя на практике индуктивный подход и знания о пропорции, полученные учениками, преподаватель на нескольких примерах может подвести учеников к пониманию понятий прямой и обратной пропорциональной зависимости.
Например:
«Члены пропорции обладают свойством, которое называют основным свойством пропорции. Во всякой пропорции произведение крайних членов равно произведению средних членов, то есть если a/b=c/d , то a · d = b · c . Это свойство применяется при нахождении неизвестного члена пропорции.
Пусть a/x = c/d , то x = a · d/c .
Посмотрите, как можно использовать знания математики в русском языке!
Именительный падеж - кто? что?
Родительный падеж - кого? чего?
Дательный падеж - кому? X ?
Недостающий вопрос дательного падежа - чему?
В окружающем нас мире большое множество пропорций или отношений. Они делятся на две большие группы:
прямо пропорциональные и обратно пропорциональные.
Прямо пропорциональные :
1. Длина пути, пройденная равномерно движущимся телом, и время, затраченное на этот путь.
2. Длина окружности и ее радиус.
3. Длина сторон прямоугольника и его периметр (площадь).
Обратно пропорциональные :
1. Радиус колеса и число совершаемых им оборотов на определенном отрезке пути.
2. Скорость движения и время в пути.
Пропорциональность - такая зависимость между величинами, при которой увеличение одной из них влечет за собой изменение во столько же раз другой величины.
Прямая и обратная пропорциональные зависимости выражаются формулами: y = a · x и y = a/x , (x отличен от нуля), где x и y - переменные величины, а - коэффициент пропорциональности, который и показывает, во сколько раз происходят изменения. а - действительное число отличное от нуля. Эти зависимости можно изобразить графически. »
В качестве закрепления понятий прямой и обратной пропорциональной зависимости преподаватель может дать несколько заданий:
1) Определить, является ли прямой пропорциональной, обратной пропорциональной или не является пропорциональной зависимость между величинами:
а) путем, пройденным автомашиной с постоянной скоростью, и временем ее движения;
б) скоростью движения и временем, если длина пути 120 км;
в) количеством машин и их грузоподъемностью;
г) стоимостью товара, купленной по одной цене, и его количеством;
д) объемом прямоугольного параллелепипеда и высотой, если площадь его основания 15 дм2 ;
е) числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу и временем выполнения работы;
ж) площадью квадрата и длиной его стороны;
з) ростом ребенка и его возрастом.
2) Задача на прямо пропорциональную зависимость:
Расстояние между городами А и В на карте равно 5,6 см, а на местности 420 км.
Какое расстояние между городами С и Д на местности, если на этой же карте расстояние между ними 3,6 см?
3) Задача на обратную пропорциональную зависимость:
28 рабочих могут выполнить строительные работы за 17 дней.
Сколько нужно рабочих, чтобы выполнит те же работы за 14 дней, если производительность труда останется неизменной?
Методика изучения линейной, квадратной и кубической функции в VII классе.
Большинство изучаемых в школьной математике функций образует классы, обладающие общностью аналитического способа задания функции из него, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции непосредственно, без выделения промежуточных звеньев. Однако длительность периода независимого рассмотрения каждой функции незначительна; в курсе алгебры вслед за введением понятия о функции сразу рассматривается первый класс – линейные функции. Для функций, входящих в класс, изучение происходит по более сложной схеме, поскольку в нём выделяются новые аспекты: изучение данной функции как члена класса и изучение свойств всего класса на примере «типичной» функции этого класса.
Типичный и одновременно важнейший для математики класс функций — линейные функции, которые мы рассмотрим с точки зрения изучения характерных для этого класса свойств и представлений, формируемых в курсе алгебры.
Первоначальное представление о линейной функции выделяется из рассмотрения задачи, обычно связанной с равномерным прямолинейным движением, а также при построении графика некоторой линейной функции. Рассмотрим второй из этих источников. Основная мысль, которую мы попытаемся обосновать, состоит в том, что рассмотрение графика отдельно взятой линейной функции не может привести к формированию представлений об основных свойствах графиков всех линейных функций.
Для этого рассмотрим два наиболее широко распространенных в начале изучения темы приема построения графиков линейной функции.
Первый способ. Использование «загущения» точек на графике. Предполагается следующая последовательность действий по этому приему:
а) нанесение нескольких точек;
б) наблюдение — все построенные точки расположены на одной прямой; проведение этой прямой;
в) проверка: берем произвольное значение аргумента и вычисляем по нему значение функции; наносим точку на координатную плоскость — она принадлежит построенной прямой. Отсюда делается вывод о графике данной линейной функции.
Этот способ безусловно может привести к пониманию того, что график и любой линейной функции — прямая, т. е. к выделению некоторого общего свойства класса линейных функций. Однако последовательное проведение приема требует большого времени и не может быть проделано более нескольких раз. Поэтому общее свойство будет при этом формироваться на основе изолированных примеров.
Второй способ. По двум точкам. Этот способ уже предполагает знание соответствующего свойства графиков линейных функций. Выявления новых свойств здесь не происходит, поскольку внимание, как и при первом способе, сосредоточивается на конкретной функции из класса. Заметим, что в обучении происходит последовательная смена этих способов: когда общее свойство графиков усвоено (при рассмотрении первого способа), начинают применять второй — он экономнее и обоснован геометрически, поскольку через две точки проходит одна и только одна прямая.
Для того чтобы изучить класс линейных функций в совокупности его общих свойств, необходимо поставить новую для учащихся познавательную задачу: исследовать класс функций у=kх+b в зависимости от параметров, установить геометрический смысл параметров. Эта задача возникает сразу же вслед за введением понятия функции. Наиболее естественный прием, который может быть применен, состоит в рассмотрении одновременно нескольких функций, у которых один из параметров изменяется, а другой остается постоянным. Простейшая система, реализующая этот прием, состоит из четырех заданий с их последующим анализом и установлением связей между ними.
Пример 5. Постройте графики функций:
у=0,5x; y=0,5x+0,5; y=1,5x; у=1,5x+0,5.
Основная часть работы начинается после построения графиков. Их нужно сравнить, обращая внимание на особенности графиков в зависимости от числовых значений коэффициентов. Опишем, например, методику выяснения геометрического смысла коэффициентов при переменной.
Следует обратить внимание на то, что графики (а) и (б) образуют с осью абсцисс одинаковые углы, это же имеет место и для графиков (в) и (г). Кроме того, графики (а) и (б) образуют с осью абсцисс меньшие углы, чем (в) и (г). С другой стороны, коэффициенты при переменной в формуле для первой и второй функций одинаковы и меньше, чем соответствующие коэффициенты у третьей и четвертой функций. Можно после этого сформулировать вывод о зависимости рассмотренного угла от коэффициента, ввести термин «угловой коэффициент» и привести несколько закрепляющих упражнений.