К вопросу о "высокотемпературных" осцилляциях магнетосопротивления висмута в ультраквантовом пределе
д. ф.-м. н. Богод Ю.А.
Проанализированы свойства "высокотемпературных" осцилляций магнетосопротивления висмута в ультраквантовом пределе. Имеющиеся экспериментальные результаты несовместимы с физической моделью [22-24] и описываются с помощью модели [20,21].
"Высокотемпературные" осцилляции (ВТО) впервые наблюдались в 1973г. [1] при изучении магнетосопротивления висмута. Одной из отличительных особенностей, послужившей причиной выбора названия эффекта, является слабое температурное затухание амплитуды осцилляций, что делает возможным их наблюдение в диапазоне от
К настоящему времени ВТО детально изучены в монокристаллах Bi высокой чистоты, монокристаллических сплавах
Существуют две альтернативные модели, в которых сделана попытка описать свойства ВТО. Согласно первой из них [20,21] причиной возникновения ВТО являются электрон-дырочные переходы у границ энергетических зон. Возможность таких переходов связана с тем обстоятельством, что в висмуте даже при низких температурах число занятых состояний носителей заряда над ферми-уровнем (вблизи границ соседних зон) достигает
В работах [22-24] предложена модель, согласно которой осцилляции возникают в результате электрон-дырочных переходов между экстремумами подзон Ландау вблизи ферми-уровня. При этом циклотронные массы электронов и дырок должны быть кратны. В модификации данной модели [25] период осцилляций определяется комбинированной площадью
Тестом при выборе модели могут служить свойства висмута в ультраквантовом пределе: согласно [22-24] в этих условиях ВТО исчезают вместе с осцилляциями Шубникова-де Гааза, а по [20,21] в ультраквантовом пределе ВТО продолжают наблюдаться. Ниже экспериментальные результаты, полученные в сильных магнитных полях, обсуждаются с данных позиций.
1.Магнитное поле параллельно биссекторной оси (Н||C1).
В данных условиях реализуются экстремальные сечения электронных ферми-поверхностей с циклотронными массами
2. Магнитное поле параллельно бинарной оси (Н||C2).
В этой геометрии наблюдаются легкие электроны (
3. Магнитное поле параллельно тригональной оси (Н||C3).
При данной ориентации Н наблюдаются близкие циклотронные массы электронов и дырок
Таким образом, в ультраквантовом пределе ситуация с выбором модели для описания ВТО явно неоднозначна. Опираясь на то, что при Н||C1 полученные данные несовместимы с рассмотрением [22-25], проанализируем результаты при Н||C2 и Н||C3 в рамках модели [20,21] с учетом зонной структуры висмута. Поскольку угловая зависимость периода ВТО в целом подобна угловой зависимости дырочных циклотронных масс [4,6,13], мы ограничимся рассмотрением дырочных осцилляций. Прежде всего напомним, что, согласно [20], ВТО при квазиупругом междолинном рассеянии в простейшом случае можно описать соотношением
где последнее слагаемое связано со смещением края электронной зоны. В соответствии с (1), каждый раз, когда экстремум подзоны Ландау дырочной ветви спектра оказывается у дна зоны проводимости, частота столкновений испытывает скачок, связанный с обращением в нуль числа состояний электронной ветви спектра ниже дна зоны проводимости, т.е. возникают осцилляции кинетических коэффициентов с периодом [21,22]
При неупругом межзонном рассеянии на акустических фононах с энергией
С помощью соотношений (2), (3) были получены усредненные значения энергии перекрытия зон
Уже говорилось, что в случае Н||C2 реализуются легкие и тяжелые электроны с существенно различными величинами спинового расщепления уровней Ландау (см. выше). Дно зоны тяжелых электронов