Смекни!
smekni.com

Система математических расчетов MATLAB (стр. 7 из 30)

Если вы попытаетесь использовать элемент, находящийся вне размеров матрицы, это приве-дет к сообщению об ошибке

t = F (4,5)

Index exceeds matrix dimensions

(Индекс превышает размерность матрицы)

С другой стороны, если вы попытаетесь запомнить какое-либо число вне размеров матрицы, размер будет соответствующим образом увеличен увеличен, чтобы принять новое значение.

X = A;

X(4,5) = 17

X =

16 3 2 13 0

5 0 11 8 0

9 6 7 12 0

4 15 14 1 17

Двоеточие (Colon)

Двоеточие, : , является одним из наиболее важных операторов MATLAB-а. Оно встречается в нескольких разных формах. Выражение 1:10 есть вектор-строка, содержащий целвые числа от 1 до 10:

1 2 3 4 5 6 7 8 9 10

Чтобы получить неединичное приращение, нужно задать приращение. Например,

100 : -7 : 50

есть

100 93 86 79 72 65 58 51

а

0 : pi/4 : pi

есть

0 0.7854 1.5708 2.3562 3.1416

Индексы, содержащие двоеточия, допускают обращение к частям матриц. Так, выражение

F (1:k, j)

дает первые k элементов j-го столбца матрицы F. То есть,

sum(F (1:4, 4))

вычисляет, как и в примере выше, сумму элементов 4-го столбца. Но есть еще лучший путь. Двоеточие само по себе означает обращение ко всем элементам строки или столбца матрицы, а зарезервированное слово end есть обращение к последним строке или столбцу матрицы (в случае векторов-строк или столбцов слово end есть обращение к последнему элементу векто-ра). Значит,

sum(F (:, end))

вычисляет сумму элементов последнего столбца матрицы F . Ответ: ans = 34. Почему маги-ческая сумма для волшебного квадрата 4 х 4 равна 34 ? Дело в том, что если целые числа от 1 до 16 (число элементов матрицы размера 4 х 4) упорядочены в четыре группы с равными сум-мами элементов, эта сумма должна быть равна

sum(1:16)/4

что, конечно, дает ans = 34.

Единичная матрица, нулевая матрицы и матрица из единиц.

Двумерные массивы случайных чисел

Единичная матрица, то есть матрица имеющая единицы на главной диагонали и нулевые ос-тальные элементы, в MATLAB-е обозначается eye, причем eye(n) есть единичная квадратная матрица размера nxn, eye(m,n) - прямоугольная единичная матрица размера mxn, а eye(size(A)) есть единичная матрица, имеющая размерность матрицы A. Например,

I = eye(3)

I =

1 0 0

0 1 0

0 0 1

I = eye (3,5)

I =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

I = eye (4,2)

I =

1 0

0 1

0 0

0 0

Нулевая матрица, то есть матрица состоящая из нулей (массив нулей), в MATLAB-е обоз-начается zeros, причем zeros (n) есть нулевая квадратная матрица размера nxn, zeros (m,n) - прямоугольная нулевая матрица размера mxn, а zeros (size(A)) есть нулевая матрица имею-щая размерность матрицы A.

Z = zeros(2,4)

Z =

0 0 0 0

0 0 0 0

Наконец, матрица состоящая из единиц (массив единиц), в MATLAB-е обозначается ones, причем ones (n) есть квадратный массив единиц размера nxn, ones (m,n) – прямоугольный массив единиц размера mxn, а ones (size(A)) есть массив единиц, имеющий размерность матрицы A.

S = 5*ones(3, 3)

S =

5 5 5

5 5 5

5 5 5

Аналогично, функция rand дает возможность сформировать соответствующие массивы слу-чайных чисел в диапазоне от 0 до 1, распределенных по равномерному закону, а функция randn – по нормальному закону.

N = fix(10*rand(1,10))

N =

4 9 4 4 8 5 2 6 8 0

R = randn(4,4)

R =

1.0668 0.2944 -0.6918 -1.4410

0.0593 -1.3362 0.8580 0.5711

-0.0956 0.7143 1.2540 -0.3999

-0.8323 1.6236 -1.5937 0.6900

Решение систем линейных уравнений

Одной из важнейших задач в технических приложениях и расчетах является задача решения систем линейных уравнений. В матричных обозначениях, данная задача может быть сформу-лирована следующим образом. При заданных двух матрицах A and B, существует ли такая единственная матрица X, что AX = B или XA = B?

Для наглядности рассмотрим одномерный пример. Имеет ли уравнение

7x = 21

единственное решение? Ответ, разумеется, да. Это уравнение имеет единственное решение x = 3. Решение может быть легко получено обычным делением.

x = 21/7 = 3

Решение при этом обычно не состоит в определении обратной величины от числа 7 (т.е. ве-личины 7-1 = 0.142857…), и последующим умножением числа 7-1 на число 21. Это было бы более трудоемко и, если число 7-1 представлено конечным числом цифр (разрядов), менее точно. Аналогичные рассуждения применимы и к системам линейных алгебраических уравнений с более чем одной неизвестной; MATLAB решает такие уравнения без вычисле-ния обратной матрицы. Хотя это и не является стандартным математическим обозначением, система MATLAB использует терминологию, связанную с обычным делением в одномерном случае, для описания общего случая решения совместной системы нескольких линейных уравнений. Два символа деления / (косая черта (по английски - slash)) и \ (обратная косая че-рта (backslash)) используются в двух случаях, когда неизвестная матрица появляется слева или справа от матрицы коэффициентов:

X = A\B обозначает решение матричного уравнения AX = B

X = B/A обозначает решение матричного уравнения XA = B.

Вы можете представлять себе это как процесс «деления» обеих частей уравнения AX = B или XA = B на A. Матрица коэффициентов A всегда находится в «знаменателе».Условие сов-местимости размерностей для X = A\B требует чтобы две матрицы A и B имели одинаковое число строк. Решение X тогда имеет такое же число столбцов как и B, а число ее строк будет равно числу столбцов A. Для X = B/A, строки и столбцы меняются ролями. На практике, ли-нейные уравнения в виде AX = B встречаются более часто, чем в виде XA = B. Следователь-но, обратная наклонная черта \ используется более часто, чем прямая / . Поэтому, в остав-шейся части данного раздела мы ограничимся рассмотрением оператора \ ; соответствующие свойства оператора / можно вывести из тождества

(B/A)' = (A'\B')

В общем случае не требуется, чтобы матрица коэффициентов A была бы квадратной. Если A имеет размер mхn, то возможны три случая:

  1. m = n Квадратная система. Ищется точное решение.
  2. m > n Переопределенная система. Ищется решение методом наименьших квадратов.
  3. m < n Недоопределенная система. Находится базовое решение с самым большим

числом m ненулевых компонент.

Оператор &bsol; использует различные алгоритмы для решения систем линейных уравнений с раз-ными типами матриц коэффициентов. Различные случаи, которые диагностируются автома-тически по типу матрицы коэффициентов, включают:

Перестановки треугольных матриц

Симметричные, положительно определенные матрицы

Квадратные невырожденные матрицы

Прямоугольные, переопределенные системы

Прямоугольные, недоопределенные системы

Квадратные системы

Наиболее часто встречающейся ситуацией является квадратная матрица коэффициентов A и одномерный вектор-столбец b справа, т.е. Ax = b. Решение x = A&bsol;b имеет при этом тот же ра-змер, что и вектор b. Например,

x = A&bsol;u

x =

10

-12

5

где матрица А есть приведенная выше матрица Паскаля. Легко удостовериться, что A*x в точности равно вектору u (численные значения этого вектора даны выше).

Если A и B являются квадратными и имеют одинаковый размер, то X = A&bsol;B имеет тот же ра-змер, например

X = A&bsol;B

X =

19 -3 -1

-17 4 13

6 0 -6

Легко убедиться, что A*X в точности равно B.

Оба этих примера имеют точное решение в виде целых чисел. Это связано с тем, что в каче-стве матрицы коэффициентов была выбрана матрица Паскаля pascal(3), чей детерминант равен единице. Далее будут рассмотрены примеры влияния ошибок округления, возникаю-щих в более реальных системах.

Квадратная матрица A является сингулярной, если ее столбцы не являются линейно незави-симыми. Если A – сингулярна, то решение AX = B или не существует, или не является един-ственным. Оператор &bsol; , A&bsol;B, выдает предупреждающее сообщение, если матрица A близка к сингулярной и сообщение об ошибке, если определено равенство нулю детерминанта матри-цы А.

Переопределенные системы

Переопределенные системы совместных линейных уравнений часто встречаются в задачах аппроксимации экспериментальных данных при помощи различных эмпирических кривых. Рассмотрим следующий гипотетический пример. Величина y измеряется при различных зна-чениях времени t, что дает следующие результаты

t y

0.0 0.82

0.3 0.72

0.8 0.63

1.1 0.60

1.6 0.55

2.3 0.50

Эти данные могут быть введены в MATLAB при помощи выражений:

t = [0 .3 .8 1.1 1.6 2.3]';

y = [0.82 0.72 0.63 0.60 0.55 0.50]';