Как MATLAB передает аргументы функции
С точки зрения программиста создается впечатление, чтоMATLAB передает функции все ар-гументы в виде их значений. В действительности, однако, MATLAB передает значения толь-ко тех аргументов, которые изменяются данной функцией. Если функция не изменяет соот-ветствующий аргумент, а просто использует его при вычислениях, MATLAB передает аргу-мент в виде ссылки на него (на его расположение в памяти) с целью оптимизации использо-вания памяти.
Рабочие пространства функций
Каждая М-функция имеет в памяти свое рабочее пространство, отдельное от основного рабо-чего пространства MATLAB-а, в котором она работает. Это пространство называется рабо-чим пространством функции, причем разные функции имеют разные рабочие пространства.
При использовании MATLAB-а, вы имеете доступ только к тем переменным, которые нахо-дятся в вызывемом контексте, будь это основное рабочее пространство или рабочее прост-ранство какой-то функции. Переменные, которые вы передаете функции, должны быть рас-положены в пространстве вызова, и , в свою очередь, функция возвращает выходные аргу-менты в то же самое рабочее пространство вызова. Вы можете, однако, определить перемен-ные как глобальные, что дает возможность доступа к ним из разных рабочих пространств.
Проверка числа аргументов функции
Функции nargin и nargout позволяют вам определить число входных и выходных аргумен-тов функции. Вы можете использовать эти функции с условными операторами для выполне-ния различных задач в зависимости от числа аргументов. Например,
function c = testarg1(a,b)
if (nargin == 1)
c = a.^2;
elseif (nargin == 2)
c = a + b;
end
При одном входном аргументе, данная функция вычисляет квадрат входной величины. Если заданы два входных аргумента, функция осуществляет их сложение.
Передача переменного числа аргументов
Функции varargin и varargout дают возможность передачи функции любого переменного числа аргументов или возвращать переменное число выходные аргументов. При использова-нии функци varargin MATLAB объединяет все заданные входные аргументы в массив яче-ек. Если вы используете функцию varargout, то ваша программа должна обеспечить объе-динение выходных переменных в массив ячеек, с тем чтобы MATLAB имел возможность вернуть их в пространство вызова. Ниже дан пример функции, которая принимает любое число двумерных векторов, и наносит на графике линию, соединяющую соответствующие точки.
function testvar (varargin)
for i = 1:length (varargin)
x(i) = varargin{i}(1);
y(i) = varargin{i}(2);
end
xmin = min(0,min(x));
ymin = min(0,min(y));
axis([xmin fix(max(x)) + 3 ymin fix(max(y)) + 3])
plot(x,y)
Функция testvar рабоает с различным числом входных переменных; например, вы можете ввести два различных набора данных
testvar ([2 3], [1 5], [4 8], [6 5], [4 2], [2 3])
testvar ([–1 0], [3 –5], [4 2], [1 1])
Распаковка содержимого функции varargin
Поскольку функция varargin содержит все входные аргументы в виде массива ячеек, для из-влечения данных необходимо использовать соответствующую индексацию. Например,
y(i) = varargin{i} (2);
Индексация ячеек имеет два набора компонент – первый набор указывает ячейку и заключен в фигурные скобки, а второй набор относится к содержимому ячейки и заключен в обычные скобки. В приведенном выше операторе выражение {i} обозначает обращение к i-ой ячейке в varargin, а выражение (2) представляет второй элемент содержимого выбранной ячейки.
Упаковка выходных переменных в функцию varargout
Когда вы хотите использовать произвольное число выходных аргументов, вы должны преду-смотреть процедуру упаковки выходных переменных в массив ячеек varargout. При этом, для определения конкретного числа вызываемых выходных аргументов используйте функ-цию nargout. Например, приведенный ниже пример принимает входной массив в виде двух столбцов, где первый столбец характеризует набор данных по оси x, а второй столбец – соот-ветствующий набор данных по оси y . Данные наборы разбиваются на отдельные пары век-торов [xi yi], которые вы можете передать описанной выше функции testvar.
function [varargout] = testvar2 (arrayin)
for i = 1:nargout
varargout {i} = arrayin (i, :)
end
Оператор присваивания в цикле for использует синтаксис индексации массивов ячеек. Вот пример применения функции testvar2:
a = {1 2; 3 4 ; 5 6 ; 7 8; 9 0};
[p1, p2, p3, p4, p5] = testvar2 (a);
Место функций varargin и varargout в списке аргументов
Функции varargin или varargout должны быть последними в списке аргументов, при этом они могут быть расположены после любого числа входных или выходных переменных. Это значит, что в строке определения функции следует сперва указать требуемые входные или выходные аргументы. Например, следующие строки определения функций показывают правильное применение varargin и varargout.
function [out1,out2] = example1(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)
Локальные и глобальные переменные
Каждая исполняемая функция MATLAB-а, определенная некоторым М-файлом, имеет свои собственные локальные переменные расположенные в своем рабочем пространстве, которые отделены от локальных переменных других функций и переменных в основном рабочем про-странстве. Однако, если несколько функций и, возможно, основное рабочее пространство, объявляют некоторую конкретную переменную глобальной, то все эти функции и основное рабочее пространство будут иметь доступ к данной переменной. Любое изменение глобаль-ной переменной, произведенное в пространстве какой-либо одной функции, немедленно воспринимается всеми остальными функциями, где эта переменная объявлена глобальной. Допустим, вы хотите изучить эффект изменения коэффициентов взаимосвязей a и b, в диф-ференциальном уравнении Лотки-Вольтера (Lotka-Volterra), известного как модель хищника-жертвы.
dy1/dt = y1 - ay1y2
dy2/dt = y2 - by1y2
Создадим М-файл lotka.m.
function yp = lotka(t,y)
global ALPHA BETA
yp = [y(1) – ALPHA*y(1)*y(2); –y(2) + BETA*y(1)*y(2)];
Затем введем последовательно в командное окно следующие выражения
global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t,y] = ode23('lotka',0,10,[1; 1]);
plot(t,y)
Объявление переменных ALPHA и BETA глобальными в командной строке позволяет ме-нять соответствующие значения внутри функции заданной файлом lotka.m. Интерактивное изменение данных переменных в командном окне приводит к получению новых решений без каких-либо редактирований текста файла.
Для работы в ваших приложениях с глобальными переменными следует:
- Объявить соответствующую переменную глобальной в каждой функции, где пре-дусмотрено ее использование. Для обеспечения доступа к глобальной переменной из командного окна нужно объявить данную переменную глобальной также и в командной строке.
- В каждой функции объявите переменную глобальной до первого появления ее имени в тексте файла. Обычно рекомендуется объявлять переменные глобальными в начале М-файла.
Глобальные переменные в MATLAB-е обычно имеет более длинные имена и иногда записы-ваются заглавными буквами.Это не является настоятельным требованием, но упрощает чте-ние файлов и уменьшает риск случайного изменения глобальной переменной.
Перманентные переменные (Persistent Variables)
Переменная может быть объявлена перманентной (постоянной) – при этом она не меняет своего значения между ее последовательными вызовами. Перманентные переменные могут быть использованы только в пределах определенной функции. Эти переменные остаются в памяти до удаления М-файла из памяти или его изменения. Во многих отношениях перма-нентные переменные аналогичны глобальным, за тем исключением, что их имя не находится в глобальном рабочем пространстве, а их значение сбрасывается при изменении М-файла или удаления из памяти.
Для работы с перманентными переменными в MATLAB-е предусмотрены три функции:
Функция | Описание |
mlock | Исключает возможность удаления М-файла из памяти |
munlock | Возвращает М-файлу возможность его удаления из памяти |
mislocked | Указывает, может ли М-файл быть удален из памяти |
Специальные переменные
Несколько функций возвращают важные специальные значения, которые вы можете исполь-зовать в ваших М-файлах.
Функция | Возвращаемое значение |
ans | Последний ответ (переменная). Если вы не присваиваете выходной переменной или вычисляемому выражению какое-либо имя, MATLAB автоматически запоминает результат в переменной ans. |
eps | Относительная точность вычислений с плавающей запятой. Это допуск, который MATLAB использует при вычислениях. |
realmax | Наибольшее число с плавающей запятой. |
realmin | Наименьшее число с плавающей запятой. |
pi | 3.1415926535897... |
i, j | Мнимая единица. |
inf | Бесконечность. Вычисления вида n/0 где n – любое ненулевое реально число, дает в результате inf. |
NaN | Не численное значение (Not-a-Number). Выражения вида 0/0 и inf/inf дают в результате NaN, так же как и арифметические операции содержащие NaN. Выражения типа n/0, где n явля- ется комплексным числом, также возвращают NaN. |
computer | Тип компьютера. |
version | Строка, содержащая версию MATLAB-а. |
Вот несколько примеров, где используются эти переменные.