Индекс единичной размерности
Определение характеристик многомерных массивов.
Для получения информации об имеющихся многомерных массивах можно воспользоваться стандартными командами size (дает размер массива), ndims (дает количество размерностей) и whos (последняя команда дает подробную информацию о всех переменных рабочего пространства системы MATLAB). Для вышеприведенного примера мы получим
size(C)
ans =
2 2 1 2
ndims(C)
ans =
4
Индексация
Многие концепции, используемые в двумерном случае, распространяются также на много-мерные массивы. Для выделения (обращения) к какому-либо одному элементу многомерного массива следует воспользоваться целочисленной индексацией. Каждый индекс указывает на соответствующую размерность: первый индекс на размерность строк, второй индекс на раз-мерность столбцов, третий на первую размерность страниц и так далее. Рассмотрим массив случайных целых чисел nddata размера 10х5х3:
nddata = fix (8*randn (10, 5, 3));
Для обращения к элементу (3,2) на странице 2 массива nddata нужно записать nddata(3,2,2).
Вы можете также использовать векторы как массив индексов. В этом случае каждый элемент вектора должен быть допустимым индексом, то есть должен быть в пределах границ, опре-деленных для размерностей массива. Так, для обращения к элементам (2,1), (2,3), и (2,4) на странице 3 массива nddata, можно записать
nddata (2, [1 3 4], 3).
Оператор двоеточия и индексирование многомерных массивов.
Стандартная индексация MATLAB-а при помощи оператора двоеточия (colon) применима и в случае многомерных массивов. Например, для выбора всего третьего столбца страницы 2 массива nddata используется запись nddata(:, 3, 2). Оператор двоеточия также полезен и для выделения определенных подмножеств данных. Так, ввод nddata(2:3,2:3,1) дает массив (мат-рицу) размера 2х2, который является подмножеством данных на странице 1 массива nddata. Эта матрица состоит из данных второй и третьей строки и сторого и третьего столбца первой стриницы многомерного массива. Оператор двоеточия может использоваться для индексации с обеих сторон записи. Например, для создания массива нулей размера 4х4 записываем:
C = zeros (4,4)
Теперь, чтобы присвоить значения подмножества 2х2 массива nddata четырем элементам в центре массива С запишем
C(2:3,2:3) = nddata (2:3,1:2,2)
Устранение неопределенностей в многомерной индексации
Некоторые выражения, такие как
A(:, :, 2) = 1:10
Являются неоднозначными, поскольку они не обеспечивают достаточного объема информа-ции относительно структуры размерности, в которую вводятся данные. В представленном выше случае, делается попытка задать одномерный вектор в двумерном объекте. В таких ситуациях MATLAB выдает сообщение об ошибке. Для устранения неопреденности, нужно убедиться, что обеспечена достаточная информация о месе записи данных, и что как данные так и место назначения имеют одинаковую форму. Например,
A(1,:,2) = 1:10.
Изменение формы (Reshaping)
Если вы не меняете форму или размер, массивы в системе MATLAB сохраняют размернос-ти, заданные при их создании. Вы можете изменить размер массива путем добавления или удаления элементов. Вы можете также изменить форму массива изменяя размерности строк, столбцов и страниц, при условии сохранения тех же элементов. Функция reshape выполняет указанную операцию. Для многомерных массивов эта функция имеет вид
B = reshape (A, [s1 s2 s3 ...] )
где s1, s2, и так далее характеризуют желаемый размер для каждой размерности преобразо-ванной матрицы. Отметим, что преобразованный массив должен иметь то же число элемен-тов, что и исходный массив (иными словами, произведение размеров массивов должно быть неизменным).
Функция reshape «действует» вдоль столбцов. Она создает преобразованную матрицу путем взятия последовательных элементов вдоль каждого столбца исходной матрицы.
Ниже в качестве примеров приведены несколько примеров массивов, которые могут быть получены из массива nddata (обратите внимание на размерности).
B = reshape(nddata,[6 25])
C = reshape(nddata,[5 3 10])
D = reshape(nddata,[5 3 2 5])
Удаление единичных размерностей.
Система MATLAB создает единичные размерности, когда вы задаете их при создании или преобразовании массива, или же в результате вычислений приводящих к появлению указан-ных размерностей.
B = repmat (5, [2 3 1 4] ) ;
size(B)
ans =
2 3 1 4
Функция squeeze удаляет единичные размерности из массива.
C = squeeze(B);
size(C)
ans =
2 3 4
Функция squeeze не оказывает воздействия на двумерные массивы – векторы-строки оста-ются строками.
Вычисления с многомерными массивами
Многие вычислительные и математические функции MATLAB-а принимают в качестве аргументов многомерные массивы. Эти функции действуют на определенные размерности многомерных массивов, в частности, на отдельные элементы, векторы или матрицы.
Действия над векторами
Функции которые действуют над векторами, такие как sum, mean, и т.д., по умолчанию обы-чно действуют вдоль первой неединичной размерности многомерного массива. Многие из этих функций дают возможность задать размерность вдоль которой они действуют. Однако, есть и исключения. Например, функция cross, которая определяет векторное произведение двух векторов, действует вдоль первой неединичной размерности, имеющей размер 3.
Внимание! Во многих случаях эти функции имеют другие ограничения на входные аргумен-ты – например, некоторые функции, допускающие многомерные входные массивы, требуют чтобы массивы имели одинаковый размер.
Поэлементное воздействие
Те функции MATLAB-а, которые действуют поэлементно на двумерные массивы, такие как тригонометрические и экспоненциальные функции, работают совершенно аналогично и в многомерном случае. Например, функция sin возвращает массив того же размера, что и вход-ной массив. Каждый элемент выходного массива является синусом соответствующего эле-мента входного массива. Аналогично, все арифметические, логические операторы и операторы отношения действуют с соответствующими элементами многомерных массивов (которые должны иметь одинаковые размеры каждой размерности). Если один из операндов является скаляром, а второй – скаляром, то операторы применяют скаляр ко всем элементам массива.
Действия над плоскостями и матрицами
Функции, действующие над плоскостями или матрицами, такие как функции линейной алге-бры или матричные функции в директории matfun , не принимают в качестве аргументов многомерные массивы. Иными словами, вы не можете использовать функции в директории matfun, или операторы *, ^, \, или /, с многомерными массивами. Попытка использования многомерных массивов или операндов в таких случаях приводит к сообщению об ошибке.
Вы можете, тем не менее, применить матричные функции или операторы к матрицам внутри многомерных массивов. Например, сооздадим трехмерный массив А
A = cat (3 , [1 2 3; 9 8 7; 4 6 5], [0 3 2; 8 8 4; 5 3 5], [6 4 7; 6 8 5; 5 4 3]);
Применение функции eig ко всему многомерному массиву дает сообщение об ошибке:
eig(A)
??? Error using - eig
Input arguments must be 2-D.
Вы можете, однако, приментиь функцию eig к отдельным плоскостям в пределах массива. Например, воспользуемся оператором двоеточия для выделения одной страницы (допустим, второй):
eig(A(:, :, 2))
ans =
–2.6260
12.9129
2.7131
Внимание! В первом случае, где не используется оператор двоеточия, для избежания ошиб-ки нужно использовать функцию squeeze. Например, ввод eig (A(2,:,:)) приводит к ошибке так как размер входа есть [1 3 3]. Выражение eig(squeeze(A(2, :, :))), однако, передает функции eig допустимую двумерную матрицу.
Организация данных в многомерных массивах
Вы можете использовать два возможных варианта представления данных при помощи многомерных массивов:
В качестве конкретного примера рассмотрим представление какого-либо изображения в формате RGB. Напомним, что в формате RGB изображение хранится в виде трех двумерных матриц одинакового размера, каждая из которых характеризует интенсивность одного цвета – красного (Red), зеленого (Green) и синего (Blue) - в соответствующей точке. Общая карти-на при этом получается в результате наложения трех указанных матриц. Для отдельного изображения, использование многомерных массивов является, вероятно, наиболее легким путем для запоминания данных и доступа к ним.
Пусть все изображение хранится в файле RGB. Для доступа к полной плоскости изображе-ния в одном цвете, допустим – красном, следует записать