T = (0 : 0.1 : 2.5)';
Y = [ones(size(T)) T T.^2]*a;
plot(T,Y,'-',t,y,'o'); grid on
Очевидно, полиномиальная аппроксимация оказалась не столь удачной. Здесь можно или по-высить порядок аппроксимирующего полинома, или попытаться найти какую-либо другую функциональную зависимость для получения лучшей подгонки.
Линейно-параметрическая регрессия[1]
Вместо полиномиальной функции, можно было-бы попробовать так называемую линейно-параметрическую функцию. В данном случае, рассмотрим экспоненциальную функцию
y = a0 + a1℮-t + a2t℮-t
Здесь также, неизвестные коэффициенты a0, a1 и a2 могут быть найдены методом наимень-ших квадратов. Составим и решим систему совместных уравнений, сформировав регресси-онную матрицу X, и применив для определения коэффициентов оператор \ :
X = [ones(size(t)) exp(- t) t.*exp(- t)];
a = X\y
a =
1.3974
- 0.8988
0.4097
Значит, наша модель данных имеет вид
y = 1.3974 – 0.8988℮-t + 0.4097t℮-t
Оценим теперь, как и раньше, значения модели на равноотстоящих точках (с шагом 0.1) и на-несем эту кривую на график с исходными данными.
Как видно из данного графика, подгонка здесь намного лучше чем в случае полиномиальной функции второго порядка.
Рассмотренные выше методы аппроксимации данных можно распространить и на случай бо-лее чем одной независимой переменной, за счет перехода к расширенной форме записи. До-пустим, мы измерили величину y для некоторых значений двух параметров x1 и x2 и полу-чили следующие результаты
x1 = [0.2 0.5 0.6 0.8 1.0 1.1]' ;
x2 = [0.1 0.3 0.4 0.9 1.1 1.4]' ;
y = [0.17 0.26 0.28 0.23 0.27 0.24]' ;
Множественную модель данных будем искать в виде
y = a0 + a1x1 + a2x2
Методы множественной регрессии решают задачу определения неизвестных коэффициентов a0 , a1 и a2 путем минимизации среднеквадратической ошибки приближения. Составим сов-местную систему уравнений, сформировав матрицу регрессии X и решив уравнения отно-сительно неизвестных коэффициентов, применяя оператор \ .
X = [ones(size(x1)) x1 x2];
a = X\y
a =
0.1018
0.4844
-0.2847
Следовательно, модель дающая минимальную среднеквадратическую ошибку аппроксима-ции имеет вид
y = 0.1018 + 0.4844x1 – 0.2847x2
Для проверки точности подгонки найдем максимальное значение абсолютного значения от-клонений экспериментальных и расчетных данных.
Y = X*a;
MaxErr = max(abs(Y - y))
MaxErr =
0.0038
Эта ошибка дает основание утверждать, что наша модель достаточно адекватно отражает ре-зультаты наблюдений.
MATLAB дает возможность осуществлять аппроксимацию данных наблюдений при помощи специального графического Интерфейса Подгонки Кривых (ИПК) (в английском оригинале - Basic Fitting interface). Используя данный интерфейс, вы можете легко и быстро решить множество задач подгонки кривых, получая при этом самую разнообразную информацию о результатах вашей подгонки. ИПК предоставляет следующие возможности:
Основываясь на ваших конкретных задачах и приложениях, вы можете использовать ИПК, возможности, предоставляемыми командным окном, или же комбинировать эти две возмож-ности. Отметим, что ИПК предназначен только для работы с одномерными и двумерными данными.
Рассмотрение основных свойств ИПК
Общий вид ИПК показан ниже.
Для его вызова в подобном виде, нужно выполнить следующие три шага:
Рассмотрим основные опции ИПК.
Select data (Выбор данных) – В данном окне расположен список всех переменных, построен-ных на активном графике, с которым связан ИПК (на графике может быть построено неско-лько кривых). Используйте данный список для выбора требуемого (текущего) набора дан-ных. Под текущим подразумевается тот набор данных, для которого вы хотите осуществить подгонку. За один раз вы можете осуществлять действия только с одним набором данных. С другой стороны, вы можете произвести различные подгонки для текущего набора данных за счет изменения названия этих данных. С этой целью можно воспользоваться так называемым Редактором Графиков (Plot Editor), который будет рассмотрен в дальнейшем.
Center and scale X data (Центрирование и масштабирование данных X) – Если данная опция выбрана, то данные центрируются (нуль переносится в среднее значение данных) и масшта-бируются к единичному стандартному отклонению (делятся на исходное стандартное откло-нение). Это может потребоваться для повышения точности последующих математических вычислений. Если подгонка приводит к результатам, которые могут быть неточными, соот-ветствующее предупреждение выводится на экран.
Plot fits (Подгонка кривых) – Эта панель позволяет визуально просмотреть результаты одной или более подгонок текущего набора данных.
Numerical results (Численные результаты) – Данная панель позволяет изучать численные характеристики каждой отдельной подгонки для текущего набора данных, без построения графиков.
Find Y = f(X) – Данная панель дает возможность произвести интерполяцию или экстраполя-цию текущей подгонки.