Смекни!
smekni.com

Система математических расчетов MATLAB (стр. 13 из 30)

T = (0 : 0.1 : 2.5)';

Y = [ones(size(T)) T T.^2]*a;

plot(T,Y,'-',t,y,'o'); grid on

Очевидно, полиномиальная аппроксимация оказалась не столь удачной. Здесь можно или по-высить порядок аппроксимирующего полинома, или попытаться найти какую-либо другую функциональную зависимость для получения лучшей подгонки.

Линейно-параметрическая регрессия[1]

Вместо полиномиальной функции, можно было-бы попробовать так называемую линейно-параметрическую функцию. В данном случае, рассмотрим экспоненциальную функцию

y = a0 + a1-t + a2t-t

Здесь также, неизвестные коэффициенты a0, a1 и a2 могут быть найдены методом наимень-ших квадратов. Составим и решим систему совместных уравнений, сформировав регресси-онную матрицу X, и применив для определения коэффициентов оператор \ :

X = [ones(size(t)) exp(- t) t.*exp(- t)];

a = X\y

a =

1.3974

- 0.8988

0.4097

Значит, наша модель данных имеет вид

y = 1.3974 – 0.8988-t + 0.4097t-t

Оценим теперь, как и раньше, значения модели на равноотстоящих точках (с шагом 0.1) и на-несем эту кривую на график с исходными данными.

Как видно из данного графика, подгонка здесь намного лучше чем в случае полиномиальной функции второго порядка.

Множественная регрессия

Рассмотренные выше методы аппроксимации данных можно распространить и на случай бо-лее чем одной независимой переменной, за счет перехода к расширенной форме записи. До-пустим, мы измерили величину y для некоторых значений двух параметров x1 и x2 и полу-чили следующие результаты

x1 = [0.2 0.5 0.6 0.8 1.0 1.1]' ;

x2 = [0.1 0.3 0.4 0.9 1.1 1.4]' ;

y = [0.17 0.26 0.28 0.23 0.27 0.24]' ;

Множественную модель данных будем искать в виде

y = a0 + a1x1 + a2x2

Методы множественной регрессии решают задачу определения неизвестных коэффициентов a0 , a1 и a2 путем минимизации среднеквадратической ошибки приближения. Составим сов-местную систему уравнений, сформировав матрицу регрессии X и решив уравнения отно-сительно неизвестных коэффициентов, применяя оператор \ .

X = [ones(size(x1)) x1 x2];

a = X\y

a =

0.1018

0.4844

-0.2847

Следовательно, модель дающая минимальную среднеквадратическую ошибку аппроксима-ции имеет вид

y = 0.1018 + 0.4844x1 – 0.2847x2

Для проверки точности подгонки найдем максимальное значение абсолютного значения от-клонений экспериментальных и расчетных данных.

Y = X*a;

MaxErr = max(abs(Y - y))

MaxErr =

0.0038

Эта ошибка дает основание утверждать, что наша модель достаточно адекватно отражает ре-зультаты наблюдений.

Графический интерфейс подгонки кривых

MATLAB дает возможность осуществлять аппроксимацию данных наблюдений при помощи специального графического Интерфейса Подгонки Кривых (ИПК) (в английском оригинале - Basic Fitting interface). Используя данный интерфейс, вы можете легко и быстро решить множество задач подгонки кривых, получая при этом самую разнообразную информацию о результатах вашей подгонки. ИПК предоставляет следующие возможности:

  • Аппроксимирует данные используя сплайновый интерполянт, эрмитовый интерпо-лянт, или же полиномиальный интерполянт до 10 порядка включительно.
  • Осуществляет множество графических построений для заданных наборов данных.
  • Строит графики невязок (ошибок подгонки).
  • Анализирует численные результаты подгонки.
  • Осуществляет интерполяцию или экстраполяцию данных подгонки.
  • Аннотирует графики численными результатами подгонки и нормами ошибок аппроксимации.
  • Запоминает результаты подгонки и вычислений в рабочет пространстве MATLAB-а.

Основываясь на ваших конкретных задачах и приложениях, вы можете использовать ИПК, возможности, предоставляемыми командным окном, или же комбинировать эти две возмож-ности. Отметим, что ИПК предназначен только для работы с одномерными и двумерными данными.

Рассмотрение основных свойств ИПК

Общий вид ИПК показан ниже.

Для его вызова в подобном виде, нужно выполнить следующие три шага:

  1. Построить какой либо график данных.
  2. Выбрать опцию Basic Fitting из меню Tools вашего графического окна.
  3. Нажать дважды на кнопку More в нижней части ИПК. В результате откроется окно c тремя панелями (см. рисунок), а сама надпись заменится на Less.

Рассмотрим основные опции ИПК.

Select data (Выбор данных) – В данном окне расположен список всех переменных, построен-ных на активном графике, с которым связан ИПК (на графике может быть построено неско-лько кривых). Используйте данный список для выбора требуемого (текущего) набора дан-ных. Под текущим подразумевается тот набор данных, для которого вы хотите осуществить подгонку. За один раз вы можете осуществлять действия только с одним набором данных. С другой стороны, вы можете произвести различные подгонки для текущего набора данных за счет изменения названия этих данных. С этой целью можно воспользоваться так называемым Редактором Графиков (Plot Editor), который будет рассмотрен в дальнейшем.

Center and scale X data (Центрирование и масштабирование данных X) – Если данная опция выбрана, то данные центрируются (нуль переносится в среднее значение данных) и масшта-бируются к единичному стандартному отклонению (делятся на исходное стандартное откло-нение). Это может потребоваться для повышения точности последующих математических вычислений. Если подгонка приводит к результатам, которые могут быть неточными, соот-ветствующее предупреждение выводится на экран.

Plot fits (Подгонка кривых) – Эта панель позволяет визуально просмотреть результаты одной или более подгонок текущего набора данных.

  • Check to display fits on figure (Отметьте методы для вывода на график) – Выберите методы подгонок, которые вы хотели бы использовать и вывести на график. Здесь имеются две основные возможности – выбор интерполянтов и выбор полиномов. Сплайновый интерполянт использует для аппроксимации сплайны, тогда как эрми-товый интерполянт использует специальную функцию pchip (Piecewise Cubic Hermite Interpolating Polynomial - Кусочно-кубический Эрмитовый Интерполяционный Поли-ном). Полиномиальная подгонка использует функцию polyfit. Вы можете одновре-менно выбрать любые методы подгонки для аппроксимации ваших данных. Если ваш набор данных содержит N точек, вам следует использовать для аппроксимации поли-номы с не более чем N коэффициентами. В противном случае, ИПК автоматически приравнивает избыточное число коэффициентов нулю, что приводит к недоопреде-ленности системы. Укажем, что при этом на дисплей выдается соответствующее сооб-щение.
  • Show equations (Показать уравнения) – При выборе данной опции, уравнение подгон-ки выводится на ваш график.
  • Significant digits (Значащие разряды) – Выберите число значащих разрядов для выво-да на дисплей.
  • Plot residuals (Построить графики разностей (невязок)) – При выборе данной опции, на график выводятся разности подгонок. Под разностью подгонки понимается раз-ность между исходными данными и результатами подгонки для каждого значения ар-гумента исходных данных. Вы можете построить графики невязок как столбчатую ди-аграмму (bar plot), как график рассеяния (scatter plot), или же как линейный график. Построения можно осуществлять как в том же графическом окне, так и в отдельном. При использовании подграфиков (subplots) для построения графиков многомерных данных, графики разностей могут быть построены только в отдельном графическом окне.
  • Show norm of residuals (Показать норму разностей) – При выборе опции, на график выводятся также значения норм разностей. Норма разности является мерой качества подгонки, где меньшее значение нормы соответствует лучшему качеству. Норма рас-считывается при помощи функции norm(V,2), где V есть вектор невязок.

Numerical results (Численные результаты) – Данная панель позволяет изучать численные характеристики каждой отдельной подгонки для текущего набора данных, без построения графиков.

  • Fit (Метод подгонки) – Выберите метод подгонки. Соответствующие результаты бу-дут представлены в окне под меню выбора метода. Заметим, что выбор метода в дан-ной панели не оказывает воздействия на панель Plot fits. Поэтому, если вы хотите по-лучить графическое представление, следует выбрать соответствующую опцию в пане-ли Plot fits.
  • Coefficients and norm of residuals (Коэффициенты и норма невязок) – В данном окне выводятся численные выражения для уравнения подгонки, выбранного в Fit. Отме-тим, что при первом открытии панели Numerical Results , в рассматриваемом окне выдаются результаты последней подгонки, выбранной вами в панели Plot fits.
  • Save to workspace (Запомнить в рабочем пространстве) – Вызывает диалоговое окно, которое позволяет запомнить в рабочем пространстве результаты вашей подгонки.

Find Y = f(X) – Данная панель дает возможность произвести интерполяцию или экстраполя-цию текущей подгонки.