Смекни!
smekni.com

Система математических расчетов MATLAB (стр. 11 из 30)

y = interpft(x, n)

где x есть вектор, содержащий дискретные значения периодической функции, заданной на равномерной сетке, а n - число равномерно распределенных точек, в которых нужно оценить значения интерполируемой функции.

Двумерная интерполяция

Функция interp2 осуществляет двумерную интерполяцию - важную операцию при обработке изображений и графического представления данных. В наиболее общей форме эта команда имеет вид

ZI = interp2(X, Y, Z, XI, YI, method)

где Z есть прямоугольный массив, содержащий значения двумерной функции; X и Y являют-ся массивами одинаковых размеров, содержащие точки в которых заданы значения двумер-ной функции; XI и YI есть матрицы, содержащие точки интерполяции (то есть промежуточ-ные точки, в которых нужно вычислить значения функции); method – строка, определяющая метод интерполяции. В случае двумерной интерполяции возможны три различных метода:

Ступенчатая интерполяция (method = 'nearest'). Этот метод дает кусочно-постоянную поверхность на области значений. Значение функции в интерполируемой точке равно значе-нию функции в ближайшей заданной точке.

Билинейная интерполяция (method = 'linear'). Метод обеспечивает аппроксимацию данных при помощи билинейной поверхности (плоскости) на множестве заданных значений двумер-ной функции. Значение в точке интерполяции является комбинацией значений четырех бли-жайших точек. Данный метод можно считать «кусочно-билинейным»; он быстрее и требует меньше памяти, чем бикубическая интерполяция.

Бикубическая интерполяция (method = 'cubic'). Данный метод аппроксимирует поверх-ность при помощи бикубических поверхностей. Значение в точке интерполяции является комбинацией значений в шестнадцати ближайших точках. Метод обеспечивает значительно более гладкую поверхность по сравнению с билинейной интерполяцией. Это может быть ключевым преимуществом в приложениях типа обработки изображений. Особенно эффек-тивным данный метод является в ситуациях, когда требуется непрерывность как интерполи-руемых данных, так и их производных.

Все эти методы требуют, чтобы X и Y были монотонными, то есть или всегда возрастающи-ми или всегда убывающими от точки к точке. Эти матрицы следует сформировать с исполь-зованием функции meshgrid, или же, в противном случае, нужно убедиться, что «схема» то-чек имитирует сетку, полученную функцией meshgrid. Перед интерполяцией, каждый из указанных методов автоматически отображает входные данные в равномерно распреде-ленную сетку. Если X и Y уже распределены равномерно, вы можете ускорить вычисления добавляя звездочку к строке метода, например, '*cubic'.

Сравнение методов интерполяции

Приведенный ниже пример сравнивает методы двумерной интерполяции в случае матрицы данных размера 7х7.

  1. Сформируем функцию peaks на «грубой» сетке (с единичным шагом).

[x, y] = meshgrid(-3 : 1 : 3);

z = peaks(x,y);

surf(x,y,z)

где функция meshgrid(-3:1:3) задает сетку на плоскости x и y в виде двумерных массивов размера 7х7; функция peaks(x,y) является двумерной функцией, используемой в MATLAB-е в качестве стандартных примеров, а surf(x,y,z) строит окрашенную параметрическую повер-хность. Соответствующий график показан ниже.

  1. Создадим теперь более мелкую сетку для интерполяции (с шагом 0.25).

[xi,yi] = meshgrid(-3:0.25:3);

  1. Осуществим интерполяция перечисленными выше методами.

zi1 = interp2(x,y,z,xi,yi,'nearest');

zi2 = interp2(x,y,z,xi,yi,'bilinear');

zi3 = interp2(x,y,z,xi,yi,'bicubic');

Сравним графики поверхностей для различных методов интерполяции.

surf(xi,yi,zi1) surf(xi,yi,zi2) surf(xi,yi,zi3)

Метод ‘nearest’ Метод ‘bilinear’ Метод ‘bicubic’

Интересно также сравнить линии уровней данных поверхностей, построенных при помощи специальной функции contour.

contour(xi,yi,zi1) contour(xi,yi,zi2) contour(xi,yi,zi3)

Метод ‘nearest’ Метод ‘bilinear’ Метод ‘bicubic’

Отметим, что бикубический метод производит обычно более гладкие контуры. Это, однако, не всегда является основной заботой. Для некоторых приложений, таких, например, как об-работка изображений в медицине, метод типа ступенчатой интерполяции может быть более предпочтительным, так как он не «производит» никаких «новых» результатов наблюдений.

Анализ данных и статистика

В данном разделе будут рассмотрены некоторые основные возможности системы MATLAB в области анализа данных и статистической обработки информации. Помимо базовых функ-ций, в системе MATLAB имеется также ряд специализированных пакетов, предназначенных для решения соответствующих задач в различных приложениях (на английском языке даны названия пакетов) :

  • Optimization – Нелинейные методы обработки данных и оптимизация.
  • Signal Processing – Обработка сигналов, фильтрация и частотный анализ.
  • Spline – Аппроксимация сплайнами.
  • Statistics – Углубленный статистический анализ, нелинейная аппроксимация и

регрессия.

  • Wavelet - Импульсная декомпозиция сигналов и изображений.

Внимание ! MATLAB выполняет обработку данных, записанных в виде двумерных массивов по столбцам ! Одномерные статистические данные обычно хранятся в отдельных векорах, причем n-мерные векторы могут иметь размерность 1х n или nх1. Для многомерных данных матрица является естественным представлением, но здесь имеются две возможности для ориентации данных. По принятому в системе MATLAB соглашению, различные пере-менные должны образовывать столбцы, а соответствующие наблюдения - строки. Поэтому, например, набор данных, состоящий из 24 выборок 3 переменных записывается в виде мат-рицы размера 24х3.

Основные функции обработки данных

Перечень функций обработки данных, расположенных в директории MATLAB-а datafun приведен в Приложении 8 .

Рассмотрим гипотетический числовой пример, который основан на ежечасном подсчете чис-ла машин, проходящих через три различные пункта в течении 24 часов. Допустим, результа-ты наблюдений дают следующую матрицу count

count =

11 11 9

7 13 11

14 17 20

11 13 9

43 51 69

38 46 76

61 132 186

75 135 180

38 88 115

28 36 55

12 12 14

18 27 30

18 19 29

17 15 18

19 36 48

32 47 10

42 65 92

57 66 151

44 55 90

114 145 257

35 58 68

11 12 15

13 9 15

10 9 7

Таким образом, мы имеем 24 наблюдения трех переменных. Создадим вектор времени, t, со-стоящий из целых чисел от 1 до 24: t = 1 : 24. Построим теперь зависимости столбцов матри-цы counts от времени и надпишем график:

plot(t, count)

legend('Location 1','Location 2','Location 3',0)

xlabel('Time')

ylabel('Vehicle Count')

grid on

где функция plot(t, count) строит зависимости трех векторов-столбцов от времени; функция

legend('Location 1','Location 2','Location 3',0) показывает тип кривых; функции xlabel и ylabel надписывают координатные оси, а grid on выводит координатную сетку. Соответству-ющий график показан ниже.

Применим к матрице count функции max (максимальное значение), mean (среднее значение) и std (стандартное, или среднеквадратическое отклонение).

mx = max(count)

mu = mean(count)

sigma = std(count)

В результате получим

mx =

114 145 257

mu =

32.00 46.5417 65.5833

sigma =

25.3703 41.4057 68.0281

где каждое число в строке ответов есть результат операции вдоль соответствующего столбца матрицы count. Для определения индекса максимального или минимального элемента нужно в соответствующей функции задать второй выходной параметр. Например, ввод

[mx,indx] = min(count)

mx =

7 9 7

indx =

2 23 24

показывает, что наименьшее число машин за час было зарегестрировано в 2 часа для первого пункта наблюдения (первый столбец) и в 23 и 24 чч. для остальных пунктов наблюдения.

Вы можете вычесть среднее значение из каждого столбца данных, используя внешнее произ-ведение вектора, составленного из единиц и вектора mu (вектора средних значений)

e = ones(24, 1)

x = count - e*mu

Перегруппировка данных может помочь вам в оценке всего набора данных. Так, использование в системе MATLAB в качестве единственного индекса матрицы двоеточия, приводит к представлению этой матрицы как одного длинного вектора, составленного из ее столбцов. Поэтому, для нахождения минимального значения всего множества данных можно ввести

min(count(:))

что приводит к результату

ans =

7

Запись count(:) в данном случае привела к перегруппировке матрицы размера 24х3 в вектор-столбец размера 72х1.

Матрица ковариаций и коэффициенты корреляции

Для статистической обработки в MATLAB-е имеются две основные функции для вычисле-ния ковариации и коэффициентов корреляции: