q =
4 5 6
r =
0 0 0 0 0
где r – остаток после деления (в данном случае нулевой вектор). В общем случае для поли-номов q, r , c, a в функции deconv справедливо соотношение
c = conv(q, a) + r
Функция polyder вычисляет производную любого полинома. Для получения производной от нашего полинома p = [1 0 -2 -5], введем
q = polyder(p)
q =
3 0 - 2
Функция polyder вычисляет также производные от произведения или частного двух полино-мов. Например, создадим два полинома a и b:
a = [1 3 5]; b = [2 4 6];
Вычислим производную произведения a*b вводом функции polyder с двумя входными аргу-ментами a и b и одним выходным:
c = polyder(a, b)
c =
8 30 56 38
Вычислим производную от частного a/b путем ввода функции polyder с двумя выходными аргументами:
[q, d] = polyder(a, b)
q =
-2 -8 -2
d =
4 16 40 48 36
где отношение двух полиномов q/d является результатом операции дифференцирования.
Функция polyfit находит коэффициенты полинома заданной степени n , который аппрокси-мирует данные (или функцию y(x)) в смысле метода наименьших квадратов:
p = polyfit(x, y, n)
где x и y есть векторы, содержащие данные x и y, которые нужно аппроксимировать полино-мом. Например, рассмотрим совокупность данных x-y, полученную экспериментальным пу-тем
x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4].
Аппроксимация функциональной зависимости y(x) в виде полинома третьего порядка
p = polyfit(x,y,3)
дает коэффициенты полинома
p =
-0.1917 31.5821 -60.3262 35.3400
Рассчитаем теперь значения полинома, полученного при помощи функции polyfit, на более мелкой шкале (с шагом 0.1) и построим для сравнения графики (это делает функция plot) реальных данных и аппроксимирующей кривой.
x2 = 1 : 0.1 : 5;
y2 = polyval(p, x2);
plot(x, y, 'o', x2, y2); grid on
где функция grid on служит для нанесения координатной сетки, а экспериментальные дан-ные на графике отмечены маркерами о.
.Как видно из рисунка, полином третьего порядка достаточно хорошо аппроксимирует наши данные.
Функция residue вычисляет вычеты, полюса и многочлен целой части отношения двух поли-номов. Это особенно полезно при представлении систем управления в виде передаточных функций. Для полиномов a(s) и b(s), при отсутствии кратных корней имеем
где r есть вектор-столбец вычетов, p есть вектор-столбец полюсов, а k есть вектор-строка це-лой части дробно-рациональной функции. Рассмотрим передаточную функцию
Для полиномов числителя и знаменателя этой функции имеем:
b = [-4 8]; a = [1 6 8].
Введя
[r, p, k] = residue(b, a)
получим
r =
-12
8
p =
-4
-2
k =
[ ]
Функция residue с тремя входными (r, p, и k) и двумя выходными (b2, a2) аргументами вы-полняет обратную функцию свертки имеющегося разложения на простые дроби, в дробно-рациональную функцию отношения двух полиномов.
[b2, a2] = residue(r, p, k)
b2 =
-4 8
a2 =
1 6 8
т.е. из данных предыдущего примера мы восстановили исходную передаточную функцию.
В случае кратных корней процедура несколько усложняется, но остается разрешимой.
Интерполяция является процессом вычисления (оценки) промежуточных значений функций, которые находятся между известными или заданными точками. Она имеет важное приме-нение в таких областях как теория сигналов, обработка изображений и других. MATLAB обеспечивает ряд интерполяционных методик, которые позволяют находить компромисс ме-жду точностью представления интерполируемых данных и скоростью вычислений и исполь-зуемой памятью.
Обзор функций интерполяции | |
Функции | Описание |
griddata | Двумерная интерполяция на неравномерной сетке. |
griddata3 | Трехмерная интерполяция на неравномерной сетке. |
griddatan | Многомерная интерполяция (n >= 3). |
interp1 | Одномерная табличная интерполяция. |
interp2 | Двухмерная табличная интерполяция. |
interp3 | Трехмерная табличная интерполяция. |
interpft | Одномерная интерполяция с использованием быстрого преобразования Фурье. |
interpn | Многомерная табличная интерполяция. |
pchip | Кубическая интерполяция при помощи полинома Эрмита. |
spline | Интерполяция кубическим сплайном. |
Одномерная интерполяция
Двумя основными типами одномерной интерполяции в MATLAB-е являются полиномиаль-ная интерполяция и интерполяция на основе быстрого преобразования Фурье.
1. Полиномиальная интерполяция
Функция interp1 осуществляет одномерную интерполяцию – важную операцию в области анализа данных и аппроксимации кривых. Эта функция использует полиномиальные методы, аппроксимируя имеющийся массив данных полиномиальными функциями и вычисляя соот-ветствующие функции на заданных (желаемых) точках. В наиболее общей форме эта функ-ция имеет вид
yi = interp1(x, y, xi, method)
где y есть вектор, содержащий значения функции; x – вектор такой же длины, содержащий те точки (значения аргумента), в которых заданы значения y; вектор xi содержит те точки, в ко-торых мы хотим найти значения вектора y путем интерполяции; method – дополнительная строка, задающая метод интерполяции. Имеются следующие возможности для выбора мето-да:
• Ступенчатая интерполяция (method = 'nearest'). Этот метод приравнивает значение функ-ции в интерполируемой точке к ее значению в ближайшей существующей точке имеющихся данных.
• Линейная интерполяция (method = 'linear'). Этот метод аппроксимирует функцию между любыми двумя существующими соседними значениями как линейную функцию, и возвр-ащает соответствующее значение для точки в xi (метод используется по умолчанию).
• Интерполяция кубическими сплайнами (method = 'spline'). Этот метод аппроксимирует ин-терполируемую функцию между любыми двумя соседними значениями при помощи куби-ческих функций, и использует сплайны для осуществления интерполяции.
• Кубическая интерполяция (method = 'pchip' или 'cubic'). Эти методы идентичны. Они ис-пользуют кусочную кубическую Эрмитову аппроксимацию и сохраняют монотонность и форму данных.
Если какой-либо из элементов вектора xi находится вне интервала, заданного вектором x, то выбранный метод интерполяции используется также и для экстраполяции. Как альтернатива,
функция yi = interp1(x, y, xi, method, extrapval) заменяет экстраполированные значения теми, которые заданы вектором extrapval. Для последнего часто используется нечисловое значение NaN.
Все методы работают на неравномерной сетке значений вектора x .
Рассмотрение скорости, требуемой памяти и гладкости методов. При выборе метода ин-терполяции всегда нужно помнить, что некоторые из них требуют большего объема памяти или выполняются быстрее, чем другие. Однако, вам может потребоваться использование лю-бого из этих методов, чтобы достичь нужной степени точности интерполяции (гладкости результатов). При этом нужно исходить из следующих критериев.
• Метод ступенчатой аппроксимации является самым быстрым, однако он дает наихудшие результаты с точки зрения гладкости.
• Линейная интерполяция использует больше памяти чем ступенчатая и требует несколько большего времени исполнения. В отличие от ступенчатой аппроксимации, результирующая функция является непрерывной, но ее наклон меняется в значениях исходной сетки (исход-ных данных).
• Кубическая интерполяция сплайнами требует наибольшего времени исполнения, хотя тре-бует меньших объемов памяти чем кубическая интерполяция. Она дает самый гладкий ре-зультат из всех других методов, однако вы можете получить неожиданные результаты, если входные данные распределены неравномерно и некоторые точки слишком близки.
• Кубическая интерполяция требует большей памяти и времени исполнения чем ступенчатая или линейная. Однако в данном случае как интерполируемые данные, так и их производные являются непрерывными.
Относительные качественные характеристики всех перечисленных методов сохраняются и в случае двух- или многомерной интерполяции.
Функция interpft осуществляет одномерную интерполяцию с использованием быстрого пре-образование Фурье (FFT). Этот метод вычисляет преобразование Фурье от вектора, который содержит значения периодической функции. Затем вычисляется обратное преобразование Фурье с использованием большего числа точек. Функция записывается в форме