Смекни!
smekni.com

Система математических расчетов MATLAB (стр. 10 из 30)

q =

4 5 6

r =

0 0 0 0 0

где r – остаток после деления (в данном случае нулевой вектор). В общем случае для поли-номов q, r , c, a в функции deconv справедливо соотношение

c = conv(q, a) + r

Вычисление производных от полиномов

Функция polyder вычисляет производную любого полинома. Для получения производной от нашего полинома p = [1 0 -2 -5], введем

q = polyder(p)

q =

3 0 - 2

Функция polyder вычисляет также производные от произведения или частного двух полино-мов. Например, создадим два полинома a и b:

a = [1 3 5]; b = [2 4 6];

Вычислим производную произведения a*b вводом функции polyder с двумя входными аргу-ментами a и b и одним выходным:

c = polyder(a, b)

c =

8 30 56 38

Вычислим производную от частного a/b путем ввода функции polyder с двумя выходными аргументами:

[q, d] = polyder(a, b)

q =

-2 -8 -2

d =

4 16 40 48 36

где отношение двух полиномов q/d является результатом операции дифференцирования.

Аппроксимация кривых полиномами

Функция polyfit находит коэффициенты полинома заданной степени n , который аппрокси-мирует данные (или функцию y(x)) в смысле метода наименьших квадратов:

p = polyfit(x, y, n)

где x и y есть векторы, содержащие данные x и y, которые нужно аппроксимировать полино-мом. Например, рассмотрим совокупность данных x-y, полученную экспериментальным пу-тем

x = [1 2 3 4 5]; y = [5.5 43.1 128 290.7 498.4].

Аппроксимация функциональной зависимости y(x) в виде полинома третьего порядка

p = polyfit(x,y,3)

дает коэффициенты полинома

p =

-0.1917 31.5821 -60.3262 35.3400

Рассчитаем теперь значения полинома, полученного при помощи функции polyfit, на более мелкой шкале (с шагом 0.1) и построим для сравнения графики (это делает функция plot) реальных данных и аппроксимирующей кривой.

x2 = 1 : 0.1 : 5;

y2 = polyval(p, x2);

plot(x, y, 'o', x2, y2); grid on

где функция grid on служит для нанесения координатной сетки, а экспериментальные дан-ные на графике отмечены маркерами о.

.

Как видно из рисунка, полином третьего порядка достаточно хорошо аппроксимирует наши данные.

Разложение на простые дроби

Функция residue вычисляет вычеты, полюса и многочлен целой части отношения двух поли-номов. Это особенно полезно при представлении систем управления в виде передаточных функций. Для полиномов a(s) и b(s), при отсутствии кратных корней имеем

где r есть вектор-столбец вычетов, p есть вектор-столбец полюсов, а k есть вектор-строка це-лой части дробно-рациональной функции. Рассмотрим передаточную функцию

Для полиномов числителя и знаменателя этой функции имеем:

b = [-4 8]; a = [1 6 8].

Введя

[r, p, k] = residue(b, a)

получим

r =

-12

8

p =

-4

-2

k =

[ ]

Функция residue с тремя входными (r, p, и k) и двумя выходными (b2, a2) аргументами вы-полняет обратную функцию свертки имеющегося разложения на простые дроби, в дробно-рациональную функцию отношения двух полиномов.

[b2, a2] = residue(r, p, k)

b2 =

-4 8

a2 =

1 6 8

т.е. из данных предыдущего примера мы восстановили исходную передаточную функцию.

В случае кратных корней процедура несколько усложняется, но остается разрешимой.

Интерполяция

Интерполяция является процессом вычисления (оценки) промежуточных значений функций, которые находятся между известными или заданными точками. Она имеет важное приме-нение в таких областях как теория сигналов, обработка изображений и других. MATLAB обеспечивает ряд интерполяционных методик, которые позволяют находить компромисс ме-жду точностью представления интерполируемых данных и скоростью вычислений и исполь-зуемой памятью.

Обзор функций интерполяции

Функции

Описание

griddata Двумерная интерполяция на неравномерной сетке.
griddata3 Трехмерная интерполяция на неравномерной сетке.
griddatan Многомерная интерполяция (n >= 3).
interp1 Одномерная табличная интерполяция.
interp2 Двухмерная табличная интерполяция.
interp3 Трехмерная табличная интерполяция.
interpft Одномерная интерполяция с использованием быстрого преобразования Фурье.
interpn Многомерная табличная интерполяция.
pchip Кубическая интерполяция при помощи полинома Эрмита.
spline Интерполяция кубическим сплайном.

Одномерная интерполяция

Двумя основными типами одномерной интерполяции в MATLAB-е являются полиномиаль-ная интерполяция и интерполяция на основе быстрого преобразования Фурье.

1. Полиномиальная интерполяция

Функция interp1 осуществляет одномерную интерполяцию – важную операцию в области анализа данных и аппроксимации кривых. Эта функция использует полиномиальные методы, аппроксимируя имеющийся массив данных полиномиальными функциями и вычисляя соот-ветствующие функции на заданных (желаемых) точках. В наиболее общей форме эта функ-ция имеет вид

yi = interp1(x, y, xi, method)

где y есть вектор, содержащий значения функции; x – вектор такой же длины, содержащий те точки (значения аргумента), в которых заданы значения y; вектор xi содержит те точки, в ко-торых мы хотим найти значения вектора y путем интерполяции; method – дополнительная строка, задающая метод интерполяции. Имеются следующие возможности для выбора мето-да:

Ступенчатая интерполяция (method = 'nearest'). Этот метод приравнивает значение функ-ции в интерполируемой точке к ее значению в ближайшей существующей точке имеющихся данных.

Линейная интерполяция (method = 'linear'). Этот метод аппроксимирует функцию между любыми двумя существующими соседними значениями как линейную функцию, и возвр-ащает соответствующее значение для точки в xi (метод используется по умолчанию).

Интерполяция кубическими сплайнами (method = 'spline'). Этот метод аппроксимирует ин-терполируемую функцию между любыми двумя соседними значениями при помощи куби-ческих функций, и использует сплайны для осуществления интерполяции.

Кубическая интерполяция (method = 'pchip' или 'cubic'). Эти методы идентичны. Они ис-пользуют кусочную кубическую Эрмитову аппроксимацию и сохраняют монотонность и форму данных.

Если какой-либо из элементов вектора xi находится вне интервала, заданного вектором x, то выбранный метод интерполяции используется также и для экстраполяции. Как альтернатива,

функция yi = interp1(x, y, xi, method, extrapval) заменяет экстраполированные значения теми, которые заданы вектором extrapval. Для последнего часто используется нечисловое значение NaN.

Все методы работают на неравномерной сетке значений вектора x .

Рассмотрение скорости, требуемой памяти и гладкости методов. При выборе метода ин-терполяции всегда нужно помнить, что некоторые из них требуют большего объема памяти или выполняются быстрее, чем другие. Однако, вам может потребоваться использование лю-бого из этих методов, чтобы достичь нужной степени точности интерполяции (гладкости результатов). При этом нужно исходить из следующих критериев.

Метод ступенчатой аппроксимации является самым быстрым, однако он дает наихудшие результаты с точки зрения гладкости.

Линейная интерполяция использует больше памяти чем ступенчатая и требует несколько большего времени исполнения. В отличие от ступенчатой аппроксимации, результирующая функция является непрерывной, но ее наклон меняется в значениях исходной сетки (исход-ных данных).

Кубическая интерполяция сплайнами требует наибольшего времени исполнения, хотя тре-бует меньших объемов памяти чем кубическая интерполяция. Она дает самый гладкий ре-зультат из всех других методов, однако вы можете получить неожиданные результаты, если входные данные распределены неравномерно и некоторые точки слишком близки.

Кубическая интерполяция требует большей памяти и времени исполнения чем ступенчатая или линейная. Однако в данном случае как интерполируемые данные, так и их производные являются непрерывными.

Относительные качественные характеристики всех перечисленных методов сохраняются и в случае двух- или многомерной интерполяции.

2. Интерполяция на основе быстрого преобразования Фурье _

Функция interpft осуществляет одномерную интерполяцию с использованием быстрого пре-образование Фурье (FFT). Этот метод вычисляет преобразование Фурье от вектора, который содержит значения периодической функции. Затем вычисляется обратное преобразование Фурье с использованием большего числа точек. Функция записывается в форме