Перебирая все xi, найдем максимум функции.
Перебирая всевозможные параметры p и q, получим некоторые наборы
(в зависимости от p и q) на которых функция достигает максимума.3. Решение задачи с использованием метода покоординатного спуска
3.1 Описание метода покоординатного спуска
Изложим этот метод на примере функции трех переменных
.Выберем нулевое приближение
. Фиксируем значения двух координат . Тогда функция будет зависеть только от одной переменной ; обозначим ее через . Найдем минимум функции одной переменной и обозначим его через . Мы сделали шаг из точки в точку по направлению, параллельному оси ; на этом шаге значение функции уменьшилось.Затем из новой точки сделаем спуск по направлению, параллельному оси
, т. е. рассмотрим , найдем ее минимум и обозначим его через . Второй шаг приводит нас в точку . Из этой точки делаем третий шаг – спуск параллельно оси и находим минимум функции . Приход в точку завершает цикл спусков.Будем повторять циклы. На каждом спуске функция не возрастает, и при этом значения функции ограничены снизу ее значением в минимуме
. Следовательно, итерации сходятся к некоторому пределу . Будет ли здесь иметь место равенство, т. е. сойдутся ли спуски к минимуму и как быстро?Это зависит от функции и выбора нулевого приближения.
Метод спуска по координатам несложен и легко программируется на ЭВМ. Но сходится он медленно. Поэтому его используют в качестве первой попытки при нахождении минимума.
3.2 Алгоритм решения
Будем перебирать с с шагом какой-либо малой длины.
Зададим нулевое приближение, например:
Найдем частные производные
.Пусть при каком-то j
Тогда k-ое приближение считаем по формулам:
Шаг t будем выбирать таким образом, чтобы
и .В результате, закончив процесс по критерию
, где -заданная точность мы придем к набору , при котором функция f максимальна.Подставим найденный набор
и соответствующее в функцию f1= и перебрав все с, выберем те , при которых f1 минимальна.Заключение
В ходе решения поставленной задачи рассмотрены случаи, когда n=4,5,6. Были найдены две основные области наборов
:1) xi=0 или 1(количество 0 и 1 одинаково)
2) xi=0.5,
.Причем участок 1<p<1.5 покрыт первой областью, при q>>p
–– из первой области, при q≈p –– из второй области, а при p→∞ область делилась между ними примерно пополам.На участке p>2 появлялись области вида:
i<k => xi=0;
i>n-k => xi=1;
k-1<i<n-k+1=> xi=0.5.
На участке 2<q<3 p
2 существует область, в которой максимум достигается при вида:xi=a => xn-i=1-a, 0<a<1.
Список использованных источников
1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994. 543с.
2. Березин И.С. и Жидков Н. П. Методы вычислений. т.1. М.: “Наука”, 1965. 633c.
3. Подбельский В.В. и Фомин С.С. Программирование на языке Си. М.: “Финансы и статистика”, 2000. 599с.
Приложение 1. Листинг программы №1
//вывод на экран областей максимума функции
#include "stdafx.h"
#include "KE2.h"
#include "math.h"
#include "KE2Doc.h"
#include "KE2View.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
IMPLEMENT_DYNCREATE(CKE2View, CView)
BEGIN_MESSAGE_MAP(CKE2View, CView)
//{{AFX_MSG_MAP(CKE2View)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG_MAP
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)
END_MESSAGE_MAP()
CKE2View::CKE2View()
{
}
CKE2View::~CKE2View()
{
}
BOOL CKE2View::PreCreateWindow(CREATESTRUCT& cs)
{
return CView::PreCreateWindow(cs);
}
void CKE2View::OnDraw(CDC* pDC)
{
CKE2Doc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
drawPoint(pDC);
// TODO: add draw code for native data here
}
BOOL CKE2View::OnPreparePrinting(CPrintInfo* pInfo)
{
// default preparation
return DoPreparePrinting(pInfo);
}
void CKE2View::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
// TODO: add extra initialization before printing
}
void CKE2View::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{
// TODO: add cleanup after printing
}
#ifdef _DEBUG
void CKE2View::AssertValid() const
{
CView::AssertValid();
}
void CKE2View::Dump(CDumpContext& dc) const
{
CView::Dump(dc);
}
CKE2Doc* CKE2View::GetDocument() // non-debug version is inline
{
ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CKE2Doc)));
return (CKE2Doc*)m_pDocument;
}
#endif //_DEBUG
int sgn(float a)
{
int sg;
if (a>0) sg=1;
if (a==0) sg=0;
if (a<0) sg=-1;
return(sg);
}
#define n 6
void CKE2View::drawPoint(CDC *pDC)
{
double **c,*f1,*f,*x,*w,*e,max,p=2,q=2,xx,yy;
int i=0,j=0,k,m,a,b,*l,bb=0;
c=new double*[10000];
for(i=0;i<10000;i++)
{
c[i]=new double[3];
memset(c[i],0,sizeof(double)*3);
}
f=new double[10000];
e=new double[10000];
w=new double[10000];
f1=new double[10000];
x=new double[n];
l=new int[10000];
for(xx=0.5;xx<1;xx+=0.01)
for(yy=xx;yy<1);yy+=0.01)
{
p=1./(1.-xx);
q=1./(1.-yy);
memset(w,0,sizeof(double)*10000);
memset(e,0,sizeof(double)*10000);
memset(f1,0,sizeof(double)*10000);
memset(x,0,sizeof(double)*n);
x[n-1]=1;
j=0;
for(i=0;i<10000;i++)
{j=0;
f1[i]=1;c[i][0]=0;c[i][1]=1;c[i][2]=0.5;
while(fabs(f1[i])>0.00000001)
{
f1[i]=0;
for(k=0;k<n;k++)
{ f1[i]+=pow((fabs(x[k]-c[i][2])),(p-1))*sgn(x[k]-c[i][2]);}
if (f1[i]<-0.00000001)
{max=c[i][2];c[i][2]=c[i][2]-(fabs(c[i][2]-c[i][1])/2.0);c[i][1]=max;}
if (f1[i]>0.00000001)
{max=c[i][2];c[i][2]=c[i][2]+(fabs(c[i][2]-c[i][1])/2.0);c[i][1]=max;}
if (fabs(f1[i])<=0.00000001)
{c[i][0]=c[i][2];goto B;}
}
B:
c[i][0]=c[i][2];
for(a=0;a<n;a++)
{
for(b=0;b<n;b++)
w[i]+=pow((fabs(x[a]-x[b])),q);
e[i]+=pow((fabs(x[a]-c[i][0])),p);
}
f[i]=pow((e[i]/n),(1./p))/pow((w[i]/(n*n)),(1./q));
x[n-2]+=0.1;
for(k=2;k<n;k++)
{
if(x[n-k]>1.04)
{
x[n-k-1]+=0.1;
x[n-k]=x[n-k-1];
for(m=2;m<k;m++)
x[n-m]=x[n-k-1];
}
if (x[0]!=0) goto A;
}
}
A:
max=f[0];k=0;
for(m=0;m<i;m++)
{
if (fabs(max-f[m])<0.001) {k++;l[k]=m;}
if (max<f[m]) {k=0;max=f[m];l[k]=m;}
}
for(a=0;a<n-1;a++)
x[a]=0;
for(a=0;a<l[0];a++)
{
x[n-2]+=0.1;
for(k=2;k<n;k++)
if(x[n-k]>1.04)
{
x[n-k-1]+=0.1;
x[n-k]=x[n-k-1];
for(m=2;m<k;m++)
x[n-m]=x[n-k-1];
}
}
b=0;
for(k=0;k<n;k++)
{
if((x[k]==0)||(fabs(x[k]-1)<0.04)) b++;
else
{
if(fabs(x[k]-0.5)<0.04) b+=2;
else b=-n;
}
}
b-=n;
if (b<0) b=24;
if (b==0) b=58;
if(b==bb) continue;
bb=b;
c=%f\n",p,q,l[0],l[k],k+1,max,c[l[0]][0]);
COLORREF cr(RGB((b%3)*127,(b%4)*85,(b%5)*63));
CBrush r(cr);
CPen rp(PS_SOLID,0,cr);
pDC->SelectObject(&rp);
pDC->SelectObject(&r);
CPoint r1[3]={CPoint(0,360),CPoint(int(720./p),-int(720./q)+360),CPoint(int(720./p),360)};
pDC->Polygon(r1,3);
}
}
Приложение 2. Листинг программы №2.
//Покоординатный спуск
#include<stdAfx.h>
#include<stdio.h>
#include<iostream.h>
#include<conio.h>