2: Label4.Caption:='лютого';
3: Label4.Caption:='березня';
4: Label4.Caption:='квітня';
5: Label4.Caption:='травня';
6: Label4.Caption:='червня';
7: Label4.Caption:='липня';
8: Label4.Caption:='серпня';
9: Label4.Caption:='вересня';
10: Label4.Caption:='жовтня';
11: Label4.Caption:='листопада';
12: Label4.Caption:='грудня';
end;
if ZAB1<=0 then
ZAB1:=abs(ZAB1)+50
else ZAB1:=50-ZAB1;
y3:=500-(((90-ZAB1)/90)*500);
x3:=((24-ZAA1)/24)*2000;
x4:=int(x3-2.5);
y4:=int(y3-2.5);
x5:=int(x3+2.5);
y5:=int(y3+2.5);
case ZPL1 of
1:Image1.Canvas.Pen.Color:=clRed;
2:Image1.Canvas.Pen.Color:=clAqua;
4:Image1.Canvas.Pen.Color:=clRed;
5:Image1.Canvas.Pen.Color:=clYellow;
6:Image1.Canvas.Pen.Color:=clLime;
7:Image1.Canvas.Pen.Color:=clGreen;
8:Image1.Canvas.Pen.Color:=clBlue;
9:Image1.Canvas.Pen.Color:=clFuchsia;
end;
Image1.Canvas.Ellipse(x4,y4,x5,y5);
g:=0;
end;
procedure TForm4.Button1Click(Sender: TObject);
begin
Timer1.Enabled:=false;
close;
end;
procedure TForm4.Timer1Timer(Sender: TObject);
begin
begin
g:=g+1;
if g div 2=5 then
begin
Image1.Canvas.Pen.Color:=clBlack;
Image1.Canvas.Brush.Style:=bsSolid;
Image1.Canvas.Brush.Color:=clBlack;
Image1.Canvas.Ellipse(x4,y4,x5,y5);
g:=0;
end
else
begin
Image1.Canvas.Brush.Style:=bsSolid;
Image1.Canvas.Brush.Color:=clWhite;
case ZPL1 of
1:Image1.Canvas.Pen.Color:=clRed;
2:Image1.Canvas.Pen.Color:=clAqua;
4:Image1.Canvas.Pen.Color:=clRed;
5:Image1.Canvas.Pen.Color:=clYellow;
6:Image1.Canvas.Pen.Color:=clLime;
7:Image1.Canvas.Pen.Color:=clGreen;
8:Image1.Canvas.Pen.Color:=clBlue;
9:Image1.Canvas.Pen.Color:=clFuchsia;
end;
Image1.Canvas.Ellipse(x4,y4,x5,y5);
end;
end;
end;
end.
4. Тестування програми і результати її виконання.
Здійснимо тестування програми на предмет похибки результатів від істинних
значень. Для цього візьмемо з “ Астрономического календаря за 1990 г.” ефе-
мериди Марса на 31 жовтня 1990р. Результати, які видала програма на цю да-
ту приведенні в таблиці ( l = 0h, j = 560 ):
31.10.1990р. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
істинне значення | 50.3 | 1.474 | 04h49.7m | +22031’ | 17.0’’ | 0.96 | 17h32m | 02h13m | 10h49m | + -1350 |
програмне значення | 50.3 | 1.474 | 04h55.8m | +22032’ | 16.9’’ | 0.96 | 17h41m | 02h18m | 10h56m | + -134.50 |
відносна похибка | 0.14% | 0.14% | 0.5% | 0.05% | 0.6% | 0% | 0.5% | 0.3% | 0.5% | 0.2% |
5.Висновки.
Отже повернімося до першого питання простої людини:” Куди направити свій погляд, щоб побачити якусь планету?” Найпростіша відповідь: ”В час кульмінації планети стати обличчям на південь ( напрям небесного меридіану ) і знаючи координату схилення d (AB) обчислити кут e між горизонтом і планетою за виразом:
e = j + ( d )
де: j - (FI) географічна широта місця спостереження, яку приблизно можна виз-
начити за атласом світу.
Програма явно “сира” – що називається “demo-версія”. Середовище Delphi дозволило спростити зовнішній інтерфейс програми, ввід-вивід інформації. Введення графічних компонент дозволило наочно зобразити розміщення планет на фоні зоряного неба.
Використання принципово іншого обчислювального “ ядра “ дозволить не тільки досягти більш точних результатів, але й визначити ефемериди для інших тіл Сонячної системи: астероїдів і комет.
6.Список літератури.
1.Астрономический календарь на 1990 г. / Под. Ред. Д.Н.Пономарева. – М.:
Наука. Гл. ред. физ-мат. лит. 1989. – 336с.
2.Бронштейн В.А. Как движется Луна? – М.: Наука. Гл. ред. физ-мат. лит.,
1990 – 208с.
3.Климишин И.А. Жемчужины звездного неба . – К.: Рад. шк., 1988. – 206с.
4.Климишин І.А., Тельнюк-Адамчук В.В. Шкільний астрономічний довідник
Кн. Для вчителя. – К.: Рад. шк., 1990. – 287с.
5.Романовський Т.Б. Микрокалькуляторы в рассказах и играх – К.: Рад. шк.,
1989. – 223с.
6.Хоровитц Н. Поиски жизни в Солнечной системе: Пер. с англ./ Под ред. и
с предисл. М.С. Крихкого. – М.: Мир, 1988. – 187с.
P.S. Не судіть надто мою необізненість в справах астрономії, тому що формули з цієї програми виводились мною будучи 15- літнім хлопцем, коли в школі розпочинають вчити тригонометрію. Хто зацікавився даною програмою може звернутися на vetoo@mail.ru , я з задоволенням вишлю її вам на шару.