3.11.4. ti=ti-1+
3.11.5. ε i=
3.12. Вывод параметров движения для торможения при i=n+1,…,2n+1
3.12.1. Вывод i, φi, ωi, ε i, ti
3.13. Вывод быстродействия для участка торможения Тt=t2n+1-tn+1
4.
5. Таблица идентификаторов
Математическое обозначение | I0 | M0 | Mc | n | Δφp | φ | t | φp | φt |
Идентификатор | I0 | M0 | Mc | n | dfp | fi | t | fip | fit |
Математическое обозначение | Δφt | i | ε | ωcp | int | Tp | Tt | Md1 | Md | C |
Идентификатор | dft | i | b | wcp | int | Tp | Tt | Md1 | Md | C |
6. Текст программы
program kurs; {Курсовая работа студента Лабоцкого Д.В.}
{Исследование вращательного движения вала Вариант 13}
uses crt;
type Big=array[1..30] of real;
var Md,fi,w,t,b,int:Big;
n,i :integer;
fe:text;
C,Mc,I0,Wcp,fip,dfp,fit,dft,Tp,Tt,M0:real;
begin clrscr;
assign(fe,'kurs-13v.rez');rewrite(fe);writeln(fe);
writeln(fe,' ':15,'Определение параметров вращательного движения',
' тела');
writeln(fe);
writeln(fe, ' ':40,' Лабоцкий Д.В.');
writeln(fe);
writeln(fe, ' ':30,'Вариант 13');
writeln('Введите исходные данные');
write('Момент инерции тела равен I0= ');readln(I0);
write('Коэффициент для движущего момента равен М0= ');readln(M0);
write('Момент сопротивления равен Мc= ');readln(Mc);
write('Уголразгона fip= ');readln(fip);
write('Количество интервалов разбиения n= ');readln(n);
writeln('Исходные данные занесены в файл результатов');
writeln(fe);
writeln(fe,' ':25,'Исходныеданные');
writeln(fe);
writeln(fe,' ':10,'Момент инерции тела равен I0= ',I0:5:2,' кг/м2');
writeln(fe,' ':10,'Коэффициент движущего момента М0= ',M0:5:2,' нм');
writeln(fe,' ':10,'Момент сопротивления Мc= ',Mc:5:2,' нм');
writeln(fe,' ':10,'Угол разгона fip= ',fip:5:2,' рад');
writeln(fe,' ':10,'Количество интервалов разбиения n= ',n:2);
dfp:=fip/n;
fi[1]:=0;W[1]:=0;t[1]:=0;
Md[1]:=M0+ln(fi[1]+1)+sqrt(fi[1]);
b[1]:=(Md[1]-Mc)/I0;
for i:=2 to (n+1) do begin
fi[i]:=fi[i-1]+dfp;
Md[i]:=M0+ln(fi[i]+1)+sqrt(fi[i]);
int[i]:=(((Md[i]-Mc)+(Md[i-1]-Mc))*dfp)/2;
W[i]:=sqrt((2/I0)*(I0*sqr(W[i-1])/2+int[i]));
Wcp:=(W[i]+W[i-1])/2;
t[i]:=t[i-1]+(fi[i]-fi[i-1])/Wcp;
b[i]:=(W[i]-W[i-1])/(t[i]-t[i-1]) end;
Tp:=t[n+1];
write(fe,' ':10);
for i:=1 to 57 do
write(fe,'_');writeln(fe);
writeln(fe,' ':10,'I',' ':10,'I',' ':10,'I',' ':16,'I',' ':16,'I');
writeln(fe,' ':8,' I fi[i] I W[i] I b[i] I ',
' t[i] I ');
writeln(fe,' ':10,'I',' ':10,'I',' ':10,'I',' ':16,'I',' ':16,'I');
write(fe,' ':10);
for i:=1 to 57 do write(fe,'-');writeln(fe);
for i:=1 to n+1 do
writeln(fe,' ':7,i:2,' I',' ',fi[i]:7:3,' I',' ',W[i]:7:3,' I',' ',
b[i]:7:3,' I',' ',t[i]:7:3,' I');
writeln('Произведен расчет параметров разгона');
fit:=(I0*sqr(W[n+1]))/(2*Mc);
b[n+1]:=-Mc/I0;
dft:=fit/n;
for i:=n+2 to (2*n+1) do begin
fi[i]:=fi[i-1]+dft;
W[i]:=sqrt((2/I0)*((I0*sqr(W[i-1])/2)-(Mc*(fi[i]-fi[i-1]))));
Wcp:=(W[i]+W[i-1])/2;
t[i]:=t[i-1]+(fi[i]-fi[i-1])/Wcp;
b[i]:=(W[i]-W[i-1])/(t[i]-t[i-1]) end;
for i:=n+1 to (2*n+1) do
writeln(fe,' ':7,i:2,' I',' ',fi[i]:7:3,' I',' ',W[i]:7:3,' I',' ',
b[i]:7:3,' I',' ',t[i]:7:3,' I');
writeln('Произведен расчет параметров торможения');
write(fe,' ');
for i:=1 to 60 do
write(fe,'_');
writeln(fe);
writeln(fe);
Tt:=t[2*n+1]-t[n+1];
writeln(fe,' Быстродействие для угла разгона равно Tp= ',
Tp:7:3,' сек');
writeln(fe,' Быстродействие для угла торможения равно Tt= ',
Tt:7:3,' сек');
close(fe);
writeln('Результаты вычислений занесены в файл kurs-13v.rez');
repeat until keypressed
end.
7. Распечатка результатов.
Определение параметров вращательного движения тела
Лабоцкий Д.В.
Вариант 13
Исходные данные
Момент инерции тела равен I0= 2.50 кг/м2
Коэффициент движущего момента М0= 15.50 нм
Момент сопротивления Мc= 10.00 нм
Угол разгона fip= 0.20 рад
Количество интервалов разбиения n= 10
I I I I I
I fi[i] I W[i] I b[i] I t[i] I
I I I I I
---------------------------------------------------------
1 I 0.000 I 0.000 I 2.200 I 0.000 I
2 I 0.020 I 0.299 I 2.232 I 0.134 I
3 I 0.040 I 0.425 I 2.280 I 0.189 I
4 I 0.060 I 0.522 I 2.308 I 0.231 I
5 I 0.080 I 0.605 I 2.333 I 0.267 I
6 I 0.100 I 0.678 I 2.354 I 0.298 I
7 I 0.120 I 0.745 I 2.374 I 0.326 I
8 I 0.140 I 0.807 I 2.393 I 0.352 I
9 I 0.160 I 0.865 I 2.411 I 0.376 I
10 I 0.180 I 0.919 I 2.428 I 0.398 I
11 I 0.200 I 0.971 I 2.444 I 0.419 I
11 I 0.200 I 0.971 I -4.000 I 0.419 I
12 I 0.212 I 0.921 I -4.000 I 0.432 I
13 I 0.224 I 0.868 I -4.000 I 0.445 I
14 I 0.235 I 0.812 I -4.000 I 0.459 I
15 I 0.247 I 0.752 I -4.000 I 0.474 I
16 I 0.259 I 0.686 I -4.000 I 0.490 I
17 I 0.271 I 0.614 I -4.000 I 0.509 I
18 I 0.282 I 0.532 I -4.000 I 0.529 I
19 I 0.294 I 0.434 I -4.000 I 0.554 I
20 I 0.306 I 0.307 I -4.000 I 0.585 I
21 I 0.318 I 0.000 I -4.000 I 0.662 I
Быстродействиедляугларазгонаравно Tp= 0.419 сек
Быстродействие для угла торможения равно Tt= 0.243 сек
8. Графическое представление результатов
9. Анализ результатов
Анализ результатов показывает:
а) В начальный момент времени скорость равна нулю, тело начинает двигаться с начальным ускорением β=2,2 м/с2
б) При перемещении тела его скорость увеличивается, так как значение силы, действующей на тело, увеличивается при перемещении, а ускорение уменьшается.
в) После того, как движущая сила перестала действовать, тело начало двигаться по инерции с постоянным ускорением, а скорость за счет силы трения уменьшается до остановки тела.
г) В момент, когда действие движущей силы прекратилось, график ускорения имеет точку разрыва.
Литература
1. Офицеров Д.В., Старых В.А. Программирование в интегрированной среде Турбо-Паскаль: Справ. пособие.—Мн.: Беларусь, 1992.
2. Петров А.В. и др. Вычислительная техника и программирование: Курсовая работа/ А.В. Петров, М.А. Титов, П.Н. Шкатов; Под ред. А.В. Петрова.—М.: Высш. школа, 1992.
3. Поляков Д.Б., Круглов И.Ю. Программирование в среде Турбо-Паскаль: Версия 5.5.—М.: Изд-во МИА, А/О Росвузнаука, 1992.
4. Фигурнов В.Э. IBM PC для пользователя: Краткий курс.—Сокращенная версия 7-го издания.—М.:ИНФРА, 1999.
5. Н.Я. Луцко.,П.П. Анципорович., Информатика Контрольные работы и курсовое проектирование: Учебно-методическое пособие для студентов-заочников машиностроительных специальностей