Смекни!
smekni.com

Исследование методов оптимизации (стр. 7 из 8)

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
1532 0,000004265 0,000004265 12,000000000036400 0,000012064
1533 0,000004232 0,000004232 12,000000000035800 0,000011970
1534 0,000004199 0,000004199 12,000000000035300 0,000011877
1535 0,000004166 0,000004166 12,000000000034700 0,000011784
1536 0,000004134 0,000004134 12,000000000034200 0,000011692
1537 0,000004101 0,000004101 12,000000000033600 0,000011600
1538 0,000004069 0,000004069 12,000000000033100 0,000011510
1539 0,000004038 0,000004038 12,000000000032600 0,000011420
1540 0,000004006 0,000004006 12,000000000032100 0,000011331
1541 0,000003975 0,000003975 12,000000000031600 0,000011242
1542 0,000003944 0,000003944 12,000000000031100 0,000011154
1543 0,000003913 0,000003913 12,000000000030600 0,000011067
1544 0,000003882 0,000003882 12,000000000030100 0,000010981
1545 0,000003852 0,000003852 12,000000000029700 0,000010895
1546 0,000003822 0,000003822 12,000000000029200 0,000010810
1547 0,000003792 0,000003792 12,000000000028800 0,000010725
1548 0,000003762 0,000003762 12,000000000028300 0,000010641
1549 0,000003733 0,000003733 12,000000000027900 0,000010558
1550 0,000003704 0,000003704 12,000000000027400 0,000010476
1551 0,000003675 0,000003675 12,000000000027000 0,000010394
1552 0,000003646 0,000003646 12,000000000026600 0,000010313
1553 0,000003618 0,000003618 12,000000000026200 0,000010232
1554 0,000003589 0,000003589 12,000000000025800 0,000010152
1555 0,000003561 0,000003561 12,000000000025400 0,000010073
1556 0,000003534 0,000003534 12,000000000025000 0,000009994

Таблица 5.13– Реализация градиентного метода при

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
1826 0,000000425 0,000000425 12,000000000000400 0,000001202
1827 0,000000422 0,000000422 12,000000000000400 0,000001193
1828 0,000000419 0,000000419 12,000000000000400 0,000001184
1829 0,000000415 0,000000415 12,000000000000300 0,000001174
1830 0,000000412 0,000000412 12,000000000000300 0,000001165
1831 0,000000409 0,000000409 12,000000000000300 0,000001156
1832 0,000000406 0,000000406 12,000000000000300 0,000001147
1833 0,000000402 0,000000402 12,000000000000300 0,000001138
1834 0,000000399 0,000000399 12,000000000000300 0,000001129
1835 0,000000396 0,000000396 12,000000000000300 0,000001120
1836 0,000000393 0,000000393 12,000000000000300 0,000001112
1837 0,000000390 0,000000390 12,000000000000300 0,000001103
1838 0,000000387 0,000000387 12,000000000000300 0,000001094
1839 0,000000384 0,000000384 12,000000000000300 0,000001086
1840 0,000000381 0,000000381 12,000000000000300 0,000001077
1841 0,000000378 0,000000378 12,000000000000300 0,000001069
1842 0,000000375 0,000000375 12,000000000000300 0,000001061
1843 0,000000372 0,000000372 12,000000000000300 0,000001052
1844 0,000000369 0,000000369 12,000000000000300 0,000001044
1845 0,000000366 0,000000366 12,000000000000300 0,000001036
1846 0,000000363 0,000000363 12,000000000000300 0,000001028
1847 0,000000361 0,000000361 12,000000000000300 0,000001020
1848 0,000000358 0,000000358 12,000000000000300 0,000001012
1849 0,000000355 0,000000355 12,000000000000300 0,000001004
1850 0,000000352 0,000000352 12,000000000000200 0,000000996

Данные по количеству итераций и заданным точностям для градиентного метода сведены в таблицу 5.14

Таблица 5.14 - Зависимость числа итераций от точности

Точность Количество итераций
0,1 382
0,01 676
0,001 969
0,0001 1263
0,00001 1556
0,000001 1850

Рисунок 5.2 – Графическое представление зависимости количества итераций N от точности E для градиентного метода.


Таким образом, анализируя полученные зависимости можно сделать вывод о том, что метод Нелдера-Мида является более эффективным. Так же следует отметить, что градиентный метод быстро приближается к экстремуму, когда текущая точка находится далеко от него, и резко замедляется вблизи экстремума.

Следует заметить, что эффективность применения методов оптимизации прежде всего обусловлена видом функции.


6. ЗАКЛЮЧЕНИЕ

В курсовой работе произведена минимизации функции

с помощью метода оптимизации нулевого порядка – метода Нелдера-Мида и метода оптимизации первого порядка – градиентного метода с дроблением шага.

В результате решения задачи минимизации с помощью метода Нелдера-Мида получено следующее значение функции:

. Данный оптимум достигается в точке
. Этот метод позволяет найти минимум (при начальной точке Х (1 ; 1)) за 29 итераций при точности решения
. При этом параметр останова равен 0,0000921.