Смекни!
smekni.com

Исследование методов оптимизации (стр. 6 из 8)

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
652 0,004240917 0,004240916 12,000035971071500 0,011995339
653 0,004207784 0,004207784 12,000035411204000 0,011901621
654 0,004174910 0,004174910 12,000034860050800 0,011808634
655 0,004142293 0,004142293 12,000034317476100 0,011716375
656 0,004109931 0,004109930 12,000033783346400 0,011624836
657 0,004077822 0,004077821 12,000033257530400 0,011534012
658 0,004045963 0,004045963 12,000032739898600 0,011443898
659 0,004014354 0,004014353 12,000032230323500 0,011354489
660 0,003982991 0,003982990 12,000031728679900 0,011265777
661 0,003951873 0,003951873 12,000031234844100 0,011177759
662 0,003920999 0,003920998 12,000030748694800 0,011090429
663 0,003890366 0,003890365 12,000030270112300 0,011003781
664 0,003859972 0,003859971 12,000029798978700 0,010917810
665 0,003829815 0,003829815 12,000029335178200 0,010832511
666 0,003799894 0,003799894 12,000028878596500 0,010747878
667 0,003770207 0,003770207 12,000028429121400 0,010663907
668 0,003740752 0,003740751 12,000027986642200 0,010580592
669 0,003711527 0,003711526 12,000027551050000 0,010497927
670 0,003682530 0,003682530 12,000027122237600 0,010415909
671 0,003653760 0,003653760 12,000026700099600 0,010334531
672 0,003625215 0,003625214 12,000026284531900 0,010253790
673 0,003596892 0,003596892 12,000025875432400 0,010173679
674 0,003568791 0,003568791 12,000025472700300 0,010094194
675 0,003540910 0,003540909 12,000025076236600 0,010015330
676 0,003513246 0,003513246 12,000024685943600 0,009937082

Таблица 5.10 – Реализация градиентного метода при

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
945 0,000426015 0,000426015 12,000000362977700 0,001204953
946 0,000422687 0,000422687 12,000000357328300 0,001195539
947 0,000419385 0,000419385 12,000000351766900 0,001186199
948 0,000416108 0,000416108 12,000000346292000 0,001176932
949 0,000412857 0,000412857 12,000000340902300 0,001167737
950 0,000409632 0,000409632 12,000000335596500 0,001158614
951 0,000406432 0,000406432 12,000000330373300 0,001149562
952 0,000403256 0,000403256 12,000000325231400 0,001140581
953 0,000400106 0,000400106 12,000000320169500 0,001131671
954 0,000396980 0,000396980 12,000000315186400 0,001122829
955 0,000393879 0,000393879 12,000000310280800 0,001114057
956 0,000390801 0,000390801 12,000000305451600 0,001105354
957 0,000387748 0,000387748 12,000000300697600 0,001096718
958 0,000384719 0,000384719 12,000000296017600 0,001088150
959 0,000381713 0,000381713 12,000000291410300 0,001079649
960 0,000378731 0,000378731 12,000000286874800 0,001071214
961 0,000375772 0,000375772 12,000000282409900 0,001062845
962 0,000372837 0,000372837 12,000000278014500 0,001054542
963 0,000369924 0,000369924 12,000000273687500 0,001046303
964 0,000367034 0,000367034 12,000000269427800 0,001038129
965 0,000364166 0,000364166 12,000000265234500 0,001030018
966 0,000361321 0,000361321 12,000000261106400 0,001021971
967 0,000358499 0,000358499 12,000000257042500 0,001013987
968 0,000355698 0,000355698 12,000000253041900 0,001006066
969 0,000352919 0,000352919 12,000000249103600 0,000998206

Таблица 5.11 – Реализация градиентного метода при

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
1239 0,000042461 0,000042461 12,000000003605800 0,000120097
1240 0,000042129 0,000042129 12,000000003549700 0,000119159
1241 0,000041800 0,000041800 12,000000003494500 0,000118228
1242 0,000041473 0,000041473 12,000000003440100 0,000117304
1243 0,000041149 0,000041149 12,000000003386500 0,000116388
1244 0,000040828 0,000040828 12,000000003333800 0,000115479
1245 0,000040509 0,000040509 12,000000003281900 0,000114576
1246 0,000040192 0,000040192 12,000000003230900 0,000113681
1247 0,000039878 0,000039878 12,000000003180600 0,000112793
1248 0,000039567 0,000039567 12,000000003131100 0,000111912
1249 0,000039258 0,000039258 12,000000003082300 0,000111038
1250 0,000038951 0,000038951 12,000000003034400 0,000110170
1251 0,000038647 0,000038647 12,000000002987100 0,000109309
1252 0,000038345 0,000038345 12,000000002940600 0,000108455
1253 0,000038045 0,000038045 12,000000002894900 0,000107608
1254 0,000037748 0,000037748 12,000000002849800 0,000106767
1255 0,000037453 0,000037453 12,000000002805500 0,000105933
1256 0,000037161 0,000037161 12,000000002761800 0,000105106
1257 0,000036870 0,000036870 12,000000002718800 0,000104285
1258 0,000036582 0,000036582 12,000000002676500 0,000103470
1259 0,000036296 0,000036296 12,000000002634800 0,000102662
1260 0,000036013 0,000036013 12,000000002593800 0,000101860
1261 0,000035731 0,000035731 12,000000002553500 0,000101064
1262 0,000035452 0,000035452 12,000000002513700 0,000100274
1263 0,000035175 0,000035175 12,000000002474600 0,000099491

Таблица 5.12 – Реализация градиентного метода при