Смекни!
smekni.com

Исследование методов оптимизации (стр. 5 из 8)

Номер итерации Х1 Х2 Функция Параметр останова
1 0,4066667 0,4066667 45,631123492267 14,5885289
2 0,4433333 0,2683333 29,870063661634 2,8471538
3 0,3141667 0,2704167 16,456883364840 0,8308005
4 0,2495833 0,2714583 13,667862520021 0,3301516
5 0,2194792 0,2030729 12,662220410942 0,1540974
6 0,1796615 0,1864974 12,281326901893 0,0870517
7 0,1546549 0,1481608 12,136891733007 0,0558708
8 0,1284945 0,1302889 12,072845463097 0,0394655
9 0,1094511 0,1066526 12,044325208099 0,0355389
10 0,0380868 0,0472725 12,032057545239 0,0204381
11 0,0107240 0,0206094 12,021017539213 0,0124410
12 0,0217244 0,0287886 12,011093940034 0,0130068
13 -0,0220008 -0,0163585 12,008732867306 0,0089109
14 -0,0274319 -0,0235556 12,005248404276 0,0053110
15 -0,0178584 -0,0140681 12,003293104515 0,0042019
16 -0,0191470 -0,0189750 12,002069416305 0,0030794
17 -0,0146824 -0,0154579 12,001121615618 0,0025320
18 -0,0132441 -0,0133520 12,000655246493 0,0026725
19 -0,0028766 -0,0042119 12,000504634754 0,0015212
20 0,0004344 -0,0008739 12,000339347268 0,0009248
21 -0,0013297 -0,0023245 12,000183034613 0,0009948
22 0,0035282 0,0029010 12,000137117579 0,0007582
23 0,0038607 0,0034821 12,000078476732 0,0004900
24 0,0027293 0,0023210 12,000050320679 0,0004156
25 0,0022628 0,0023222 12,000031684386 0,0002830
26 0,0015804 0,0017419 12,000017894979 0,0002411
27 0,0015265 0,0015966 12,000009969113 0,0002705
28 0,0001079 0,0002907 12,000008036464 0,0001594
29 -0,0002737 -0,0001084 12,000005403290 0,0000921
30 -0,0000145 0,0001182 12,000003012890 0,0000930
31 -0,0005185 -0,0004534 12,000002135678 0,0000765
32 -0,0005149 -0,0004829 12,000001171711 0,0000537
33 -0,0003880 -0,0003474 12,000000755753 0,0000486
34 -0,0002538 -0,0002710 12,000000487650 0,0000301
35 -0,0001568 -0,0001842 12,000000290103 0,0000249
36 -0,0001661 -0,0001816 12,000000155619 0,0000289
37 0,0000186 -0,0000052 12,000000128281 0,0000180
38 0,0000601 0,0000402 12,000000084592 0,0000102
39 0,0000243 0,0000074 12,000000049029 0,0000094

Таблица 5.6 – Реализация метода Нелдера-Мида при

Номер итерации Х1 Х2 Функция Параметр останова
1 0,4066667 0,4066667 45,631123492267 14,5885289
2 0,4433333 0,2683333 29,870063661634 2,8471538
3 0,3141667 0,2704167 16,456883364840 0,8308005
4 0,2495833 0,2714583 13,667862520021 0,3301516
5 0,2194792 0,2030729 12,662220410942 0,1540974
6 0,1796615 0,1864974 12,281326901893 0,0870517
7 0,1546549 0,1481608 12,136891733007 0,0558708
8 0,1284945 0,1302889 12,072845463097 0,0394655
9 0,1094511 0,1066526 12,044325208099 0,0355389
10 0,0380868 0,0472725 12,032057545239 0,0204381
11 0,0107240 0,0206094 12,021017539213 0,0124410
12 0,0217244 0,0287886 12,011093940034 0,0130068
13 -0,0220008 -0,0163585 12,008732867306 0,0089109
14 -0,0274319 -0,0235556 12,005248404276 0,0053110
15 -0,0178584 -0,0140681 12,003293104515 0,0042019
16 -0,0191470 -0,0189750 12,002069416305 0,0030794
17 -0,0146824 -0,0154579 12,001121615618 0,0025320
18 -0,0132441 -0,0133520 12,000655246493 0,0026725
19 -0,0028766 -0,0042119 12,000504634754 0,0015212
20 0,0004344 -0,0008739 12,000339347268 0,0009248
21 -0,0013297 -0,0023245 12,000183034613 0,0009948
22 0,0035282 0,0029010 12,000137117579 0,0007582
23 0,0038607 0,0034821 12,000078476732 0,0004900
24 0,0027293 0,0023210 12,000050320679 0,0004156
25 0,0022628 0,0023222 12,000031684386 0,0002830
26 0,0015804 0,0017419 12,000017894979 0,0002411
27 0,0015265 0,0015966 12,000009969113 0,0002705
28 0,0001079 0,0002907 12,000008036464 0,0001594
29 -0,0002737 -0,0001084 12,000005403290 0,0000921
30 -0,0000145 0,0001182 12,000003012890 0,0000930
31 -0,0005185 -0,0004534 12,000002135678 0,0000765
32 -0,0005149 -0,0004829 12,000001171711 0,0000537
33 -0,0003880 -0,0003474 12,000000755753 0,0000486
34 -0,0002538 -0,0002710 12,000000487650 0,0000301
35 -0,0001568 -0,0001842 12,000000290103 0,0000249
36 -0,0001661 -0,0001816 12,000000155619 0,0000289
37 0,0000186 -0,0000052 12,000000128281 0,0000180
38 0,0000601 0,0000402 12,000000084592 0,0000102
39 0,0000243 0,0000074 12,000000049029 0,0000094
40 0,0000716 0,0000655 12,000000032997 0,0000081
41 0,0000655 0,0000636 12,000000017601 0,0000061
42 0,0000522 0,0000486 12,000000011215 0,0000059
43 0,0000267 0,0000299 12,000000007565 0,0000034
44 0,0000136 0,0000178 12,000000004741 0,0000026
45 0,0000167 0,0000194 12,000000002493 0,0000031
46 -0,0000062 -0,0000033 12,000000002045 0,0000021
47 -0,0000104 -0,0000081 12,000000001302 0,0000012
48 -0,0000057 -0,0000037 12,000000000784 0,0000010
49 -0,0000094 -0,0000089 12,000000000507 0,0000009

Данные по количеству итераций и заданным точностям для метода Нелдера-Мида сведены в таблицу 5.7

Таблица 5.7 - Зависимость числа итераций от точности

Точность Количество итераций
0,1 6
0,01 13
0,001 20
0,0001 29
0,00001 39
0,000001 49

Рисунок 5.1 – Графическое представление зависимости количества итераций N от точности E для метода Нелдера-Мида.

Для градиентного метода, принимая во внимание большое количество итераций, целесообразно приводить для каждой реализации первые и последние 25 итераций.

Реализация градиентного метода:

Таблица 5.8 – Реализация градиентного метода при

Номер итерации Х1 Х2 Функция Параметр останова
1 0,992187500 0,976562500 14,872248322711100 5,725771436
2 0,972112596 0,966700991 14,755778561425900 5,391343315
3 0,960252606 0,949298075 14,647453457158200 5,170831157
4 0,944120479 0,937143394 14,545808827169400 4,999364954
5 0,931250704 0,922455245 14,450015755630300 4,851038521
6 0,917052669 0,909905567 14,359522419103900 4,715343849
7 0,904265341 0,896648294 14,273894939963900 4,588117156
8 0,891210499 0,884368998 14,192768112137200 4,467486611
9 0,878869537 0,872030350 14,115817843495700 4,352565782
10 0,866628626 0,860230552 14,042753034754000 4,242801681
11 0,854831609 0,848589700 13,973308662686200 4,137814211
12 0,843250897 0,837314037 13,907242987828300 4,037283606
13 0,832001542 0,826261206 13,844334505896600 3,940936337
14 0,820995553 0,815497743 13,784380045189000 3,848521743
15 0,810266979 0,804966957 13,727192808899800 3,759812059
16 0,799778396 0,794686358 13,672600853099300 3,674595835
17 0,789535800 0,784630345 13,620445636362400 3,592677880
18 0,779520366 0,774799711 13,570580790710000 3,513876598
19 0,769728817 0,765180416 13,522870992857600 3,438023378
20 0,760149472 0,755767918 13,477190974079800 3,364961115
21 0,750776352 0,746552749 13,433424623226000 3,294543452
22 0,741600798 0,737528983 13,391464187766000 3,226633778
23 0,732616368 0,728689198 13,351209552529500 3,161104506
24 0,723815911 0,720027406 13,312567592195300 3,097836320
25 0,715193248 0,711537292 13,275451586431100 3,036717546
358 0,042588763 0,042587983 12,003630828695700 0,120676586
359 0,042255429 0,042254667 12,003574166022100 0,119728711
360 0,041924713 0,041923969 12,003518389968100 0,118788359
361 0,041596595 0,041595868 12,003463486588100 0,117855470
362 0,041271053 0,041270343 12,003409442157800 0,116929982
363 0,040948069 0,040947375 12,003356243171100 0,116011835
364 0,040627620 0,040626943 12,003303876336500 0,115100970
365 0,040309688 0,040309026 12,003252328573200 0,114197326
366 0,039994251 0,039993605 12,003201587008200 0,113300844
367 0,039681292 0,039680660 12,003151638972600 0,112411467
368 0,039370788 0,039370172 12,003102471998700 0,111529137
369 0,039062723 0,039062121 12,003054073816300 0,110653795
370 0,038757075 0,038756487 12,003006432349600 0,109785386
371 0,038453826 0,038453252 12,002959535714300 0,108923853
372 0,038152957 0,038152396 12,002913372214400 0,108069140
373 0,037854448 0,037853901 12,002867930339100 0,107221192
374 0,037558283 0,037557747 12,002823198760000 0,106379954
375 0,037264440 0,037263918 12,002779166327700 0,105545371
376 0,036972904 0,036972393 12,002735822069600 0,104717390
377 0,036683654 0,036683156 12,002693155186500 0,103895956
378 0,036396674 0,036396187 12,002651155050100 0,103081018
379 0,036111944 0,036111468 12,002609811200200 0,102272522
380 0,035829448 0,035828983 12,002569113341800 0,101470417
381 0,035549167 0,035548714 12,002529051343000 0,100674650
382 0,035271085 0,035270642 12,002489615231500 0,099885171

Таблица 5.9 – Реализация градиентного метода при