2. РАЗРАБОТКА ПОДСИСТЕМЫ ОБРАБОТКИ И ФИЛЬТРАЦИИ СИГНАЛА
При разработке подсистемы обработки и фильтрации звукового сигнала требуется выполнить следующие задачи:
1) изучение структуры звуковых файлов различных форматов и реализация возможностей чтения этих форматов для последующей обработки;
2) разработка алгоритмов, позволяющих преобразовывать исходный звуковой сигнал с целью изменения характеристик звучания;
3) программная реализация алгоритмов, позволяющих преобразовывать исходный звуковой сигнал с целью изменения характеристик звучания.
Автоматизация процесса обработки и фильтрации звукового сигнала подразумевает реализацию в подсистеме определенных средств и функций. Следует выделить функциональных особенностей, которыми должна обладать подсистема:
1) возможность открытия и анализа файлов форматов Microsoft Wave, MP3 и Electronic Music;
2) отображение структуры звукового сигнала, записанного в файле, в графическом виде с возможностью изменения масштаба;
3) обеспечение возможности основных операций редактирования: выделение части сигнала, ее удаление, копирование и вставку. Обеспечение возможности вставки звукового сигнала из другого файла;
4) возможность изменения основных параметров цифрового звука: частоты дискретизации, битрейта, числа каналов;
5) изменение темпа (скорости) звукового сигнала, уровня громкости, обращение звукового сигнала;
6) применение звуковых эффектов к сигналу с указанием необходимых для них параметров.
Перечислим реализуемые звуковые эффекты с указанием их параметров:
– эффект эха: реализация повторения звукового сигнала с помощью временных преобразований таким образом, чтобы человеческое ухо воспринимало полученный сигнал как эхо (параметры: количество откликов, время между откликами, громкость отклика относительно предыдущего);
– эффект реверберации: придание звучанию объемности, характерной для большого зала, где каждый звук порождает соответствующий, медленно угасающий отзвук; отличается тем, что на входной сигнал накладывается задержанный во времени выходной сигнал, а не задержанная копия входного (параметры: количество отражений, задержка отраженного сигнала, громкость отражения относительно предыдущего);
– эффекты возрастающей и затухающей громкости: плавное увеличение громкости от нулевого уровня в начале фрагмента до максимального в конце и наоборот соответственно (параметр: величина громкости в процентах от текущей).
Полученный измененный звуковой сигнал поступает в подсистему кодирования данных для уменьшения занимаемого им размера.
Входной информацией для подсистемы является цифровой звуковой сигнал, записанный в звуковом файле определенного формата. Формат входного звукового файла представлен в табл.2.1.
Файл этого формата содержит заголовок, описывающий общие параметры файла, и один или более фрагментов, каждый из которых представляет собой волновую форму или вспомогательную информацию.
Таблица 2.1
Структура звукового файла формата Microsoft RIFF/WAVE
СМЕЩЕНИЕ ОТ НАЧАЛА ФАЙЛА | ДЛИНА | ОПИСАНИЕ |
0 | 4 | ИДЕНТИФИКАТОР ФОРМАТА ( 'RIFF ') |
4 | 4 | ДЛИНА БЛОКА ДАННЫХ ( ДЛИНА ФАЙЛА БЕЗ ЭТОГО ЗАГОЛОВКА) |
8 | 4 | ИДЕНТИФИКАТОР БЛОКА ЗВУКОВЫХ ДАННЫХ ( 'WAVE‘ ) |
12 | 4 | ИДЕНТИФИКАТОР ПОДБЛОКА ЗАГОЛОВКА (‘fmt_‘) |
16 | 4 | ДЛИНА ПОДБЛОКА ЗАГОЛОВКА |
20 | 2 | ТИП ФОРМАТА ПРЕДСТАВЛЕНИЯ ДАННЫХ |
22 | 2 | ЧИСЛО КАНАЛОВ ( 1 - МОНО, 2 – СТЕРЕО ) |
24 | 2/4 | ЧАСТОТА ДИСКРЕТИЗАЦИИ, ГЦ |
26/28 | 2/4 | СКОРОСТЬ ПЕРЕДАЧИ ДАННЫХ, БАЙТ/С (ЧИСЛО КАНАЛОВ х ЧАСТОТА ДИСКРЕТИЗАЦИИ х РАЗРЯДНОСТЬ В БАЙТАХ) |
28/32 | 2 | ВЫРАВНИВАНИЕ БЛОКА ДАННЫХ (ЧИСЛО КАНАЛОВ х РАЗРЯДНОСТЬ) |
30/34 | 2 | РАЗРЯДНОСТЬ - ЧИСЛО БИТ НА ОДИН ОТСЧЕТ ( 8, 16 ) |
32/36 | 4 | ИДЕНТИФИКАТОР ПОДБЛОКА ДАННЫХ ( ‘DATA') |
36/40 | 4 | ДЛИНА ЗВУКОВЫХ ДАННЫХ |
40/44 | ЗВУКОВЫЕ ДАННЫЕ (0..255 ПРИ 8 БИТ И -32768..32767 ПРИ 16 БИТ) |
Выходной информацией для данной задачи является измененный звуковой сигнал, записанный в файле, структура которого аналогична описанной в п.2.1.2.
Спектр – один из важнейших инструментов анализа и обработки звука. Французский математик Фурье (1768-1830) и его последователи доказали, что любую, обязательно периодическую функцию, в случае ее соответствия некоторым математическим условиям можно разложить в тригонометричес-кий ряд Фурье:
, | (1) |
где ai, bi – это так называемые коэффициенты Фурье, рассчитывающиеся по некоторой формуле.
На рис. 2.1 представлена цифровая форма представления звука.
Цифровая форма представления звукового сигнала
Рис. 2.1
Основные параметры цифрового звука:
– частота дискретизации: определяется интервалом времени, через кото-рое происходит измерение значения амплитуды аналогового сигнала;
– битрейт: разрядность квантования; количество бит, которым описывает-ся одна секунда звукового сигнала;
– число каналов: число источников звука, через которые воспроизводятся звуковые сигналы.
Звуковые сигналы поступают на вход системы в цифровом виде – в виде звуковых файлов, структура которых описана в п.2.1.2.
Задача обработки и фильтрации заключается в извлечении и обработки необходимых данных из файла.
С помощью заголовка звукового файла можно прочитать и изменить описанные основные параметры звукового сигнала, записанного в файле.
Для изменения звукового сигнала и применения к нему эффектов необходимо прочитать и отредактировать звуковые данные из основной части файла.
Математическое представление звуковых эффектов и их параметров:
Эффект реверберации.
На рис. 2.2 представлен исходный звуковой сигнал, а на рис. 2.3 применение к исходному сигналу эффекта реверберации с указанием параметров На оси абцисс откладывается время, а по оси ординат значение амплитуды (громкости) звукового сигнала в определенный момент времени.
Исходный сигнал
Рис.2.2
Эффект реверберации
T – время между отражениями;
h1 – громкость исходного звукового сигнала;
h2 – громкость отраженного сигнала.
Рис. 2.3
В данном случае h1=h2, то есть громкость отраженного сигнала равна громкости исходного сигнала.
Количество отражений в данном случае равно 1.
Эффект эха.
На рис. 2.4 представлен исходный звуковой сигнал, а на рис. 2.5 применение к исходному сигналу эффекта эха с указанием параметров На оси абцисс откладывается время, а по оси ординат значение амплитуды (громкости) звукового сигнала в определенный момент времени.
Исходный сигнал
Рис. 2.4
Эффект эха
T – время между откликами;