Смекни!
smekni.com

Архитектура Flash-памяти (стр. 1 из 5)

Министерство науки и образования Украины

Институт социального управления экономики и права

Кафедра специализированных компьютерных систем

Пояснительная записка

ІСУЕП 04254.009

до курсового проекта

с дисциплины: «Архитектура ЭВМ»

на тему:

«Архитектура Flash-памяти»

Проверил:

Подготовил:

проф. Романкевич О.М. ст. преп. Рудаков К.С.

студент III курса

группы КС-14

Крывонижко К.Н.

_____________

(оценка)

«___» ________ «___» ________

_____________ _____________

(подпись) (подпись)

г. Черкассы 2004

Содержание


1. Введение..................................................................................... 3-4

2. Что такое flash-память?....................................................................5-9

3. Организация flash-памяти…………………………………………10-14

4. Архитектура флэш-памяти………………………………………..14-18

5. Карты памяти (флэш-карты)………………………………………19-28

6. Вывод………………………………………………………………..29

7. Литература..........................................................................................30


1.Введение

Технология флэш-памяти появилась около 20-ти лет назад. В конце 80-х годов прошлого столетия флэш-память начали использовать в качестве альтернативы UV-EPROM. С этого момента интерес к флэш-памяти с каждым годом неуклонно возрастает. Внимание, которое уделяется флэш-памяти, вполне объяснимо – ведь это самый быстрорастущий сегмент полупроводникового рынка. Ежегодно рынок флэш-памяти растет более чем на 15%, что превышает суммарный рост всей остальной полупроводниковой индустрии.

Сегодня флэш-память можно найти в самых разных цифровых устройствах. Её используют в качестве носителя микропрограмм для микроконтроллеров HDD и CD-ROM, для хранения BIOS в ПК. Флэш-память используют в принтерах, КПК, видеоплатах, роутерах, брандмауэрах, сотовых телефонах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах и стиральных машинах... список можно продолжать бесконечно. А в последние годы флэш становится основным типом сменной памяти, используемой в цифровых мультимедийных устройствах, таких как mp3-плееры и игровые приставки. А все это стало возможным благодаря созданию компактных и мощных процессоров. Однако при покупке какого-либо устройства, помещающегося в кармане, не стоит ориентироваться лишь на процессорную мощность, поскольку в списке приоритетов она стоит далеко не на первом месте.

Начало этому было положено в 1997 году, когда флэш-карты впервые стали использовать в цифровых фотокамерах.

При выборе портативных устройств самое важное, на мой взгляд - время автономной работы при разумных массе и размерах элемента питания. Во многом это от памяти, которая определяет объем сохраненного материала, и, продолжительность работы без подзарядки аккумуляторов. Возможность хранения информации в карманных устройствах ограничивается скромными энергоресурсами Память, обычно используемая в ОЗУ компьютеров, требует постоянной подачи напряжения. Дисковые накопители могут сохранять информацию и без непрерывной подачи электричества, зато при записи и считывании данных тратят его за троих. Хорошим выходом оказалась флэш-память, не разряжающаяся самопроизвольно. Носители на ее основе называются твердотельными, поскольку не имеют движущихся частей. К сожалению, флэш-память - дорогое удовольствие: средняя стоимость ее мегабайта составляет 2 доллара, что в восемь раз выше, чем у SDRAM, не говоря уж о жестких дисках. А вот отсутствие движущихся частей повышает надежность флэш-памяти: стандартные рабочие перегрузки равняются 15 g, а кратковременные могут достигать 2000 g, т. е. теоретически карта должна превосходно работать при максимально возможных космических перегрузках, и выдержать падения с трёхметровой высоты. Причем в таких условиях гарантируется функционирование карты до 100 лет.

Многие производители вычислительной техники видят память будущего исключительно твердотелой. Следствием этого стало практически одновременное появление на рынке комплектующих нескольких стандартов флэш-памяти

.

2.Что такое flash-память?

Флэш-память - особый вид энергонезависимой перезаписываемой полупроводниковой памяти.

- Энергонезависимая

- не требующая дополнительной энергии для хранения данных (энергия требуется только для записи).

- Перезаписываемая - допускающая изменение (перезапись) хранимых в ней данных.

- Полупроводниковая (твердотельная) - не содержащая механически движущихся частей (как обычные жёсткие диски или CD), построенная на основе интегральных микросхем (IC-Chip).

В отличие от многих других типов полупроводниковой памяти, ячейка флэш-памяти не содержит конденсаторов – типичная ячейка флэш-памяти состоит всего-навсего из одного транзистора особой архитектуры. Ячейка флэш-памяти прекрасно масштабируется, что достигается не только благодаря успехам в миниатюризации размеров транзисторов, но и благодаря конструктивным находкам, позволяющим в одной ячейке флэш-памяти хранить несколько бит информации. Флэш-память исторически происходит от ROM (Read Only Memory) памяти, и функционирует подобно RAM (Random Access Memory). Данные флэш хранит в ячейках памяти, похожих на ячейки в DRAM. В отличие от DRAM, при отключении питания данные из флэш-памяти не пропадают. Замены памяти SRAM и DRAM флэш-памятью не происходит из-за двух особенностей флэш-памяти: флэш работает существенно медленнее и имеет ограничение по количеству циклов перезаписи (от 10.000 до 1.000.000 для разных типов). Надёжность/долговечность: информация, записанная на флэш-память, может храниться очень длительное время (от 20 до 100 лет), и способна выдерживать значительные механические нагрузки (в 5-10 раз превышающие предельно допустимые для обычных жёстких дисков). Основное преимущество флэш-памяти перед жёсткими дисками и носителями CD-ROM состоит в том, что флэш-память потребляет значительно (примерно в 10-20 и более раз) меньше энергии во время работы. В устройствах CD-ROM, жёстких дисках, кассетах и других механических носителях информации, большая часть энергии уходит на приведение в движение механики этих устройств. Кроме того, флэш-память компактнее большинства других механических носителей. Флэш-память исторически произошла от полупроводникового ROM, однако ROM-памятью не является, а всего лишь имеет похожую на ROM орг

анизацию. Множество источников (как отечественных, так и зарубежных) зачастую ошибочно относят флэш-память к ROM. Флэш никак не может быть ROM хотя бы потому, что ROM (Read Only Memory) переводится как "память только для чтения". Ни о какой возможности перезаписи в ROM речи быть не может! Небольшая, по началу, неточность не обращала на себя внимания, однако с развитием технологий, когда флэш-память стала выдерживать до 1 миллиона циклов перезаписи, и стала использоваться как накопитель общего назначения, этот недочет в классификации начал бросаться в глаза. Среди полупроводниковой памяти только два типа относятся к "чистому" ROM - это Mask-ROM и PROM. В отличие от них EPROM, EEPROM и Flash относятся к классу энергонезависимой перезаписываемой памяти (английский эквивалент - nonvolatile read-write memory или NVRWM).

ROM:

  • ROM (Read Only Memory) - память только для чтения. Русский эквивалент - ПЗУ (Постоянно Запоминающее Устройство). Если быть совсем точным, данный вид памяти называется Mask-ROM (Масочные ПЗУ). Память устроена в виде адресуемого массива ячеек (матрицы), каждая ячейка которого может кодировать единицу информации. Данные на ROM записывались во время производства путём нанесения по маске (отсюда и название) алюминиевых соединительных дорожек литографическим способом. Наличие или отсутствие в соответствующем месте такой дорожки кодировало "0" или "1". Mask-ROM отличается сложностью модификации содержимого (только путем изготовления новых микросхем), а также длительностью производственного цикла (4-8 недель). Поэтому, а также в связи с тем, что современное программное обеспечение зачастую имеет много недоработок и часто требует обновления, данный тип памяти не получил широкого распространения.
    Преимущества:
    1. Низкая стоимость готовой запрограммированной микросхемы (при больших объёмах производства).
    2. Высокая скорость доступа к ячейке памяти.
    3. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.
    Недостатки:
    1. Невозможность записывать и модифицировать данные после изготовления.
    2. Сложный производственный цикл.
  • PROM - (Programmable ROM), или однократно Программируемые ПЗУ. В качестве ячеек памяти в данном типе памяти использовались плавкие перемычки. В отличие от Mask-ROM, в PROM появилась возможность кодировать ("пережигать") ячейки при наличии специального устройства для записи (программатора). Программирование ячейки в PROM осуществляется разрушением ("прожигом") плавкой перемычки путём подачи тока высокого напряжения. Возможность самостоятельной записи информации в них сделало их пригодными для штучного и мелкосерийного производства. PROM практически полностью вышел из употребления в конце 80-х годов.
    Преимущества:
    1. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.
    2. Возможность программировать готовую микросхему, что удобно для штучного и мелкосерийного производства.

    3. Высокая скорость доступа к ячейке памяти.
    Недостатки:
    1. Невозможность перезаписи
    2. Большой процент брака
    3. Необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой

NVRWM: