Смекни!
smekni.com

Технологии локальных сетей (стр. 5 из 6)

Сеть Gigabit Ethernet, прежде всего, находит применение в сетях, объединяющих компьютеры крупных предприятий, которые располагаются в нескольких зданиях. Она позволяет с помощью соответствующих коммутаторов, преобразующих скорости передачи, обеспечить каналы связи с высокой пропускной способностью между отдельными частями сложной сети или линии связи коммутаторов со сверхбыстродействующими серверами.

Вероятно, в ряде случаев Gigabit Ethernet будет вытеснять оптоволоконную сеть FDDI, которая в настоящее время все чаще используется для объединения в сеть нескольких локальных сетей, в том числе, и Ethernet. Правда, FDDI может связывать абонентов, находящихся гораздо дальше друг от друга, но по скорости передачи информации Gigabit Ethernet существенно превосходит FDDI.

Но даже сеть Gigabit Ethernet не может решить некоторых задач. Уже предлагается и 10-гигабитная версия Ethernet, называемая 10Gigabit Ethernet (стандарт IEEE 802.3ae, принятый в 2002 году). Она принципиально отличается от предыдущих версий. В качестве среды передачи используется исключительно оптоволоконный кабель. Электрический кабель может иногда применяться только для связи на короткие расстояния (порядка 10 метров). Режим обмена – полнодуплексный. Формат пакета Ethernet прежний. Это, наверное, единственное, что остается от изначального стандарта Ethernet (IEEE 802.3).[3]

В заключение несколько слов об альтернативном решении сверхбыстродействующей сети. Речь идет о сети с технологией ATM (Asynchronous Transfer Mode). Данная технология используется как в локальных, так и в глобальных сетях. Основная идея – передача цифровых, голосовых и мультимедийных данных по одним и тем же каналам. Строго говоря, жесткого стандарта на аппаратуру ATM не предполагает.

Первоначально была выбрана скорость передачи 155 Мбит/с (для настольных систем – 25 Мбит/с), затем – 662 Мбит/с, а сейчас ведутся работы по повышению скорости до 2488 Мбит/с. По скорости ATM успешно конкурирует с Gigabit Ethernet. Кстати, появилась ATM раньше, чем Gigabit Ethernet.В качестве среды передачи информации в локальной сети технология ATM предполагает использование оптоволоконного кабеля и неэкранированной витой пары. Используемые коды – 4В/5В и 8В/10В.[7]

Принципиальное отличие ATM от остальных сетей состоит в отказе от привычных пакетов с полями адресации, управления и данных. Вся передаваемая информация упакована в микропакеты (ячейки, cells) длиной 53 байта. Каждая ячейка имеет 5-байтовый заголовок, который позволяет интеллектуальным распределительным устройствам сортировать ячейки и следить за тем, чтобы они передавались в нужной последовательности. Каждая ячейка имеет 48 байт информации. Их минимальный размер позволяет осуществлять коррекцию ошибок и маршрутизацию на аппаратном уровне. Он же обеспечивает равномерность всех информационных потоков сети и минимальное время ожидания доступа к сети.

Заголовок включает в себя идентификаторы пути, канала доставки, типа информации, указатель приоритета доставки, а также контрольную сумму заголовка, позволяющую определить наличие ошибок передачи.

Главный недостаток сетей с технологией ATM состоит в их полной несовместимости ни с одной из имеющихся сетей. Плавный переход на АТМ в принципе невозможен, нужно менять сразу все оборудование, а стоимость его пока что очень высока. Правда, работы по обеспечению совместимости ведутся, снижается и стоимость оборудования. Тем более что задач по передаче изображений по компьютерным сетям становится все больше и больше.

Технология АТМ еще в недалеком прошлом считалась перспективной и универсальной, способной потеснить привычные локальные сети. Однако в настоящий момент вследствие успешного развития традиционных локальных сетей применение АТМ ограничено только глобальными и магистральными сетями.[6]

7 БЕСПРОВОДНЫЕ СЕТИ

До недавнего времени беспроводная связь в локальных сетях практически не применялась. Однако с конца 90-х годов 20 века наблюдается настоящий бум беспроводных локальных сетей (WLAN – Wireless LAN). Это связано в первую очередь с успехами технологии и с теми удобствами, которые способны предоставить беспроводные сети. По имеющимся прогнозам, число пользователей беспроводных сетей в 2005 году достигнет 44 миллионов, а 80% всех мобильных компьютеров будут оснащены встроенными средствами доступа к таким сетям.

В 1997 году был принят стандарт для беспроводных сетей IEEE 802.11. Сейчас этот стандарт активно развивается и включает в себя уже несколько разделов, в том числе три локальные сети (802.11a, 802.11b и 802.11g). Стандарт содержит следующие спецификации:

  • 802.11 – первоначальный стандарт WLAN. Поддерживает передачу данных со скоростями от 1 до 2 Мбит/с.
  • 802.11a – высокоскоростной стандарт WLAN для частоты 5 ГГц. Поддерживает скорость передачи данных 54 Мбит/с.
  • 802.11b – стандарт WLAN для частоты 2,4 ГГц. Поддерживает скорость передачи данных 11 Мбит/с.
  • 802.11e – устанавливает требования качества запроса, необходимое для всех радио интерфейсов IEEE WLAN.
  • 802.11f – описывает порядок связи между равнозначными точками доступа.
  • 802.11g – устанавливает дополнительную технику модуляции для частоты 2,4 ГГц. Предназначен для обеспечения скоростей передачи данных до 54 Мбит/с.
  • v802.11h – описывает управление спектром частоты 5 ГГц для использования в Европе и Азии.
  • 802.11i – исправляет существующие проблемы безопасности в областях аутентификации и протоколов шифрования.

Разработкой и поддержкой стандарта IEEE 802.11 занимается комитет Wi-Fi Alliance. Термин Wi-Fi (wireless fidelity) используется в качестве общего имени для стандартов 802.11a и 802.11b, а также всех последующих, относящихся к беспроводным локальным сетям (WLAN).

Оборудование беспроводных сетей включает в себя точки беспроводного доступа (Access Point) и беспроводные адаптеры для каждого абонента.

Точки доступа выполняют роль концентраторов, обеспечивающих связь между абонентами и между собой, а также функцию мостов, осуществляющих связь с кабельной локальной сетью и с Интернет. Несколько близкорасположенных точек доступа образуют зону доступа Wi-Fi, в пределах которой все абоненты, снабженные беспроводными адаптерами, получают доступ к сети. Такие зоны доступа (Hotspot) создаются в местах массового скопления людей: в аэропортах, студенческих городках, библиотеках, магазинах, бизнес-центрах и т.д.

Каждая точка доступа может обслуживать несколько абонентов, но чем больше абонентов, тем меньше эффективная скорость передачи для каждого из них. Метод доступа к сети – CSMA/CD. Сеть строится по сотовому принципу. В сети предусмотрен механизм роуминга, то есть поддерживается автоматическое подключение к точке доступа и переключение между точками доступа при перемещении абонентов, хотя строгих правил роуминга стандарт не устанавливает.

Поскольку радиоканал не обеспечивает высокой степени защиты от прослушивания, в сети Wi-Fi используется специальный встроенный механизм защиты информации. Он включает средства и процедуры аутентификации для противодействия несанкционированному доступу к сети и шифрование для предотвращения перехвата информации.[8]

Стандарт IEEE 802.11b был принят в 1999 г. и благодаря ориентации на освоенный диапазон 2,4 ГГц завоевал наибольшую популярность у производителей оборудования. В качестве базовой радиотехнологии в нем используется метод DSSS (Direct Sequence Spread Spectrum), который отличается высокой устойчивостью к искажению данных, помехам, в том числе преднамеренным, а также к обнаружению. Поскольку оборудование 802.11b, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала. Пропускная способность (теоретическая 11 Мбит/с, реальная – от 1 до 6 Мбит/с) отвечает требованиям большинства приложений. Расстояния – до 300 метров, но обычно – до 160 метров.

Стандарт IEEE 802.11a рассчитан на работу в частотном диапазоне 5 ГГц. Скорость передачи данных до 54 Мбит/с, то есть примерно в пять раз быстрее сетей 802.11b. Это наиболее широкополосный из семейства стандартов 802.11. Определены три обязательные скорости – 6, 12 и 24 Мбит/с и пять необязательных – 9, 18, 36, 48 и 54 Мбит/с. В качестве метода модуляции сигнала принято ортогональное частотное мультиплексирование (OFDM). Его наиболее существенное отличие от методов DSSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам 802.11а относятся большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (около 100 м). Кроме того, устройства для 802.11а дороже, но со временем ценовой разрыв между продуктами 802.11b и 802.11a будет уменьшаться.

Стандарт IEEE 802.11g является новым стандартом, регламентирующим метод построения WLAN, функционирующих в нелицензируемом частотном диапазоне 2,4 ГГц. Благодаря применению технологии ортогонального частотного мультиплексирования (OFDM) максимальная скорость передачи данных в беспроводных сетях IEEE 802.11g составляет 54 Мбит/с. Оборудование, поддерживающее стандарт IEEE 802.11g, например точки доступа беспроводных сетей, обеспечивает одновременное подключение к сети беспроводных устройств стандартов IEEE 802.11g и IEEE 802.11b. Стандарт 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b. Теоретически 802.11g обладает достоинствами двух своих предшественников. В числе преимуществ 802.11g надо отметить низкую потребляемую мощность, большие расстояния (до 300 м) и высокую проникающую способность сигнала.

Спецификация IEEE 802.11d. устанавливает универсальные требования к физическому уровню (процедуры формирования каналов, псевдослучайные последовательности частот и т. д.). Стандарт 802.11d пока находится в стадии разработки.