Смекни!
smekni.com

Особенности экспертных систем (стр. 4 из 5)

Классификация экспертных систем

Одним из наиболее значительных достижений искусственного интеллекта стала разработка мощных компьютерных систем, получивших название "экспертных", или основанных на "знаниях" систем. В современном обществе при решении задач управления сложными многопараметрическими и сильносвязанными системами, объектами, производственными и технологическими процессами приходится сталкиваться с решением неформализуемых либо трудноформализуемых задач. Такие задачи часто возникают в следующих областях: авиация, космос и оборона, нефтеперерабатывающая промышленность и транспортировка нефтепродуктов, химия, энергетика, металлургия, целлюлозно-бумажная промышленность, телекоммуникации и связь, пищевая промышленность, машиностроение, производство цемента, бетона и т. п. транспорт, медицина и фармацевтическое производство, административное управление, прогнозирование и мониторинг. Наиболее значительными достижениями в этой области стало создание систем, которые ставят диагноз заболевания, предсказывают месторождения полезных ископаемых, помогают в проектировании электронных устройств, машин и механизмов, решают задачи управления реакторами и другие задачи [11, 73].

Итак, под экспертной системой (ЭС) понимают программу, которая использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала.

Осознание полезности систем, которые могут копировать дорогостоящие или редко встречающиеся человеческие знания, привело к широкому внедрению и расцвету этой технологии в 1980-1990-е годы прошлого века. Основу успеха ЭС составили два важных свойства, отмечаемые рядом исследователей [85, 79]:

  • в ЭС знания отделены от данных, и мощность экспертной системы обусловлена в первую очередь мощностью базы знаний и только во вторую очередь — используемыми методами решения задач;
  • решаемые ЭС задачи являются неформализованными или слабоформализованными и используют эвристические, экспериментальные, субъективные знания экспертов в определенной предметной области.

Основными категориями решаемых ЭС задач являются: диагностика, управление (в том числе технологическими процессами), интерпретация, прогнозирование, проектирование, отладка и ремонт, планирование, наблюдение (мониторинг), обучение.

Обобщенная схема ЭС приведена на рис. 6.2, здесь она более подробная, чем в предыдущей лекции. Основу ЭС составляет подсистема логического вывода, которая использует информацию из базы знаний (БЗ), генерирует рекомендации по решению искомой задачи. Чаще всего для представления знаний в ЭС применяются системы продукций и семантические сети. Допустим, БЗ состоит из фактов и правил (если <посылка>, то <заключение>). Если ЭС определяет, что посылка верна, то правило признается подходящим для данной консультации и запускается в действие. Запуск правила означает принятие заключения данного правила в качестве составной части процесса консультации.

Обязательными частями любой ЭС являются также модуль приобретения знаний, модуль отображения и объяснения решений. В большинстве случаев реальные ЭС в промышленной эксплуатации работают также на основе баз данных (БД).


Рис. 6.2. Структура экспертной системы

Только одновременная работа со знаниями и большими объемами информации из БД позволяет ЭС получить неординарные результаты, например, поставить сложный диагноз (медицинский или технический), открыть месторождение полезных ископаемых, управлять ядерным реактором в реальном времени.

Важную роль при создании ЭС играют инструментальные средства. Среди инструментальных средств для создания ЭС наиболее популярны такие языки программирования, как LISP и PROLOG, а также экспертные системы-оболочки (ЭСО): KEE, CENTAUR, G2 и GDA, CLIPS, АТ_ТЕХНОЛОГИЯ, предоставляющие в распоряжение разработчика — инженера по знаниям широкий набор для комбинирования систем представления знаний, языков программирования, объектов и процедур [66, 103].

Рассмотрим различные способы классификации ЭС.

По назначению ЭС делятся на:

  • ЭС общего назначения;
  • специализированные ЭС.

В свою очередь, специализированные ЭС делятся на:

  • проблемно-ориентированные для задач диагностики, проектирования, прогнозирования;
  • предметно-ориентированные для специфических задач, например, контроля ситуаций на атомных электростанциях.

По степени зависимости от внешней среды выделяют:

  • статические ЭС, не зависящие от внешней среды;
  • динамические, учитывающие динамику внешней среды и предназначенные для решения задач в реальном времени. Время реакции в таких системах может задаваться в миллисекундах, и эти системы реализуются, как правило, на языке С++.

По типу использования различают:

  • изолированные ЭС;
  • ЭС на входе/выходе других систем;
  • гибридные ЭС или, иначе говоря, ЭС, интегрированные с базами данных и другими программными продуктами (приложениями).

По сложности решаемых задач различают:

  • простые ЭС — до 1000 простых правил;
  • средние ЭС — от 1000 до 10000 структурированных правил;
  • сложные ЭС — более 10000 структурированных правил.

По стадии создания выделяют:

  • исследовательский образец ЭС, разработанный за 1-2 месяца с минимальной БЗ;
  • демонстрационный образец ЭС, разработанный за 2-4 месяца, например, на языке типа LISP, PROLOG, CLIPS;
  • промышленный образец ЭС, разработанный за 4-8 месяцев, например на языке типа CLIPS с полной БЗ;
  • коммерческий образец ЭС, разработанный за 1,5-2 года, например на языке типа С++, Java с полной БЗ.

6.3. Трудности при разработке экспертных систем

Разработка ЭС связана с определенными трудностями, которые необходимо хорошо знать, так же как и способы их преодоления. Рассмотрим подробнее эти проблемы.

  1. Проблема извлечения знаний экспертов. Ни один специалист никогда просто так не раскроет секреты своего профессионального мастерства, свои сокровенные знания в профессиональной области. Он должен быть заинтересован материально или морально, причем хорошо заинтересован. Никто не хочет рубить сук, на котором сидит. Часто такой специалист опасается, что, раскрыв все свои секреты, он будет не нужен компании. Вместо него будет работать экспертная система. Избежать этого поможет выбор высококвалифицированного эксперта, заинтересованного в сотрудничестве.
  2. Проблема формализации знаний экспертов. Эксперты-специалисты в определенной области, как правило, не в состоянии формализовать свои знания. Часто они принимают правильные решения на интуитивном уровне и не могут аргументированно объяснить, почему принято то или иное решение. Иногда эксперты не могут прийти к взаимопониманию (фраза "встретились два геолога, у них было три мнения" — не шутка, а жизненная реальность). В таких ситуациях поможет выбор эксперта, умеющего ясно формулировать свои мысли и легко объяснять другим свои идеи.
  3. Проблема нехватки времени у эксперта. Выбранный для разработки эксперт не может найти достаточно времени для выполнения проекта. Он слишком занят. Он всем нужен. У него есть проблемы. Чтобы избежать этой ситуации, необходимо получить от эксперта, прежде чем начнется проект, согласие тратить на проект время в определенном фиксированном объеме.
  4. Правила, формализованные экспертом, не дают необходимой точности. Этого можно избежать, если решать вместе с экспертом реальные задачи. Не надо придумывать "игрушечных" ситуаций или задач. В условиях задач нужно использовать реальные данные, такие как лабораторные данные, отчеты, дневники и другую информацию, взятую из практических задач. Постарайтесь говорить с экспертом на одном языке, применяя единую терминологию. Эксперт, как правило, легче понимает правила, записанные на языке, близком к естественному, а не на языке типа LISP или PROLOG.
  5. Недостаток ресурсов. В качестве ресурсов выступают персонал (инженеры знаний, разработчики инструментальных средств, эксперты) и средства построения ЭС (средства разработки и средства поддержки). Недостаток благожелательных и грамотных администраторов порождает скептицизм и нетерпение у руководителей. Повышенное внимание в прессе и преувеличения вызвали нереалистические ожидания, которые приводят к разочарованию в отношении экспертных систем. ЭС могут давать не самые лучшие решения на границе их применимости, при работе с противоречивыми знаниями и в рассуждениях на основе здравого смысла. Могут потребоваться значительные усилия, чтобы добиться небольшого увеличения качества работы ЭС. Экспертные системы требуют много времени на разработку. Так, создание системы PUFF для интерпретации функциональных тестов легких потребовало 5 человеко-лет, на разработку системы PROCPECTOR для разведки рудных месторождений ушло 30 человеко-лет, система XCON для расчета конфигурации компьютерных систем на основе VAX 11/780 потребовала 8 человеко-лет. ЭС последних времен разрабатываются более быстрыми темпами за счет развития технологий ЭС, но проблемы остались. Удвоение персонала не сокращает время разработки наполовину, потому что процесс создания ЭС — это процесс со множеством обратных связей. Все это необходимо учитывать при планировании создания ЭС.
  6. Неадекватность инструментальных средств решаемой задаче. Часто определенные типы знаний (например, временные или пространственные) не могут быть легко представлены на одном языке ПЗ, так же как и разные схемы представления (например, фреймы и продукции) не могут быть достаточно эффективно реализованы на одном языке ПЗ. Некоторые задачи могут быть непригодными для решения по технологии ЭС (например, отдельные задачи анализа сцен). Необходим тщательный анализ решаемых задач, чтобы определить пригодность предлагаемых инструментальных средств и сделать правильный выбор.

О других трудностях и ловушках при создании ЭС более подробно можно прочитать в учебнике [21].