По сложившейся терминологии, различные методы и средства передачи информации на участке от провайдера, предоставляющего доступ к услугам глобальной сети, до конечного пользователя, принято называть вариантами решения проблемы «последней мили». Качество соединения на этом участке и его длина существенным образом сказываются на степени приближения реально достижимой скорости обмена для конечного пользователя к номинальной скорости для данной технологии.
Однопроводная линия – самая простая из возможных линий последовательной передачи данных (см. рис. 3.3). Из-за большого территориального удаления передатчика от приемника в сети (до нескольких сотен метров или даже свыше километра) возникает заметная разница потенциалов между точками заземления аппаратуры и возрастает влияние ничем не скомпенсированных помех. Поэтому на практике такие линии передачи в сетях не используются.
Рис. 3.3. Однопроводная линия передачи (при симплексном режиме обмена данными)
Обычную линию силового электропитания на 220 В (электропроводку) в последнее время успешно используют для организации двунаправленной системы домашней автоматики, связывающей различные бытовые приборы (осветительные приборы, стиральную машину, телевизор и др.) и датчики (температуры, потребляемой мощности и др.). Цель состоит как в управлении этими приборами, так и в сигнализации об опасных ситуациях (пожар, утечка газа и т.д.). «Побочное» использование электропроводки для организации домашней локальной сети напрашивается само собой, однако при этом надо иметь в виду далеко не идеальные характеристики такой линии. Измерения на реальных линиях электропроводки в диапазоне частот 100...150 кГц, наиболее перспективном для передачи данных, показали существенный разброс модуля импеданса линии (1,5...80 Ом), затухания (2...40 дБ) и уровня шума (до –15 дБ). Эти характеристики существенно зависят от количества одновременно включенных бытовых приборов.
Двухпроводная телефонная линия в пределах отдельных зданий представляет собой простой двухжильный провод (симметричный кабель), но и это уже прогресс по сравнению с рассмотренной ранее однопроводной линией, так как отсчет принятого сигнала ведется не от потенциала «земли», а от второго провода в линии. В таких линиях просто организуется симплексный и полудуплексный режим обмена данными, в то время как дуплексный обмен возможен только ценою снижения скорости передачи (при частотном или временном разделении «прямого» и «обратного» каналов). Если учесть ограниченную полосу пропускания аналоговой телефонной линии, то выделение в ней «прямого» и «обратного» каналов с равными скоростями обмена в обоих направлениях оказывается неэффективным решением. Правда, иногда требуется передавать в одном из направлений служебную информацию (сообщение о состоянии удаленного модема, его режимах работы и др.), для которой скорость передачи некритична. Тогда параллельный канал может быть организован практически без потери скорости по основному каналу.
Четырехпроводная телефонная линия преодолевает недостаток обычной двухпроводной линии, так как позволяет организовать дуплексный обмен без потери скорости в обоих направлениях. Однако линии такого типа не столь широко распространены, как двухпроводные.
Многопарный телефонный кабель используется в магистральной части телефонной линии (для внешних соединений) и отличается от «внутренних» телефонных линий большей полосой пропускания, которая необходима для уплотнения множества телефонных каналов.
Линии на основе коаксиального кабеля, применяемые в системах кабельного телевидения (CATV), подобны соединениям во многих локальных сетях. В этих линиях используется еще один тип специализированных модемов, «заслуживших» собственное название: cable modems. Обычный телевизионный сигнал и цифровые данные при передаче по кабелю должны быть разнесены по разным частотным диапазонам. Поэтому увеличение скорости не такое заметное, как в локальных сетях, монопольно использующих высокочастотные кабели (100 Мбит/с в сетях типа Fast Ethernet и др.). Компромиссное решение для локальных сетей, основанных на системах кабельного телевидения, состоит в выборе неравных скоростей при передаче запросов от пользователя в сеть (до 10 Мбит/с) и при получении информации в обратном направлении (до 40 Мбит/с). Безусловно, вторая скорость важнее.
Цифровые абонентские линии (Digital Subscriber Loop – xDSL) постепенно замещают аналоговые телефонные линии. Общие преимущества от перехода к цифровым методам обработки сигналов в данном случае дополняются заметным увеличением максимально доступной скорости передачи и реализацией постоянных (некоммутируемых) соединений. Некоторые из вариантов xDSL требуют использования четырехпроводной линии, другие могут функционировать на обычных двухпроводных линиях. Это позволяет организовать высокоскоростную передачу данных, не прибегая к замене старых абонентских линий и прокладке новых выделенных каналов. Повышение скорости достигается за счет более полного использования полосы пропускания линии и усложнения алгоритма обработки передаваемой информации, в том числе ее уплотнения. При этом необходима замена оборудования в магистральной части линии и применение xDSL – модемов со стороны пользователя и провайдера. Различные варианты xDSL – технологий перечислены ниже:
HDSL – высокоскоростные цифровые абонентские линии;ADSL – асимметричные цифровые абонентские линии;
ISDL – ISDN цифровые абонентские линии;
SDSL – симметричные высокоскоростные цифровые абонентские линии;
VDSL – Very HDSL;RADSL – цифровые абонентские линии с подстройкой скорости передачи данных;
UADSL – универсальные асимметричные цифровые абонентские линии. ADSL, для которой скорость потока данных в сторону пользователя (абонента) составляет от 8 до 1,5 Мбит/с, а в обратную сторону – от 1,5 Мбит/с до 640 Кбит/с. На практике из-за снижения качества линий на участке «последней мили» и влияния перекрестных помех реальная скорость в сторону пользователя может оказаться ниже 1 Мбит/с. SDSL, для которой скорость в обоих направлениях достигает 2 Мбит/с (реально по Москве средняя скорость составляет 1,5 Мбит/с).Линии на основе оптоволоконного кабеля практически снимают скоростные ограничения для всех видов информации (включая динамические изображения высокого разрешения). Это – технология будущего, которая не нашла широкого применения в районах с уже сложившейся инфраструктурой. Причина в том, что необходимо вкладывать дополнительные средства в организацию «последней мили». Зачастую прокладку оптических сетей делает невозможной архитектура построенных несколько лет назад зданий. В таких случаях гораздо дешевле применять старый и проверенный xDSL. При строительстве же новых зданий оптические технологии «последней мили» прочно заняли свою нишу и реально используются в странах Юго-Восточной Азии и континентальной Америки.
Беспроводные (радио-) линии привлекательны для тех пользователей, которые не имеют фиксированного рабочего места (учащиеся институтов и университетов, инженеры на производстве и т.д.). Обычно в локальной сети стационарные проводные участки (сегменты) сочетаются с удаленными пользователями или сегментами, обслуживаемыми с помощью радио-модемов (radio modems). Высокая частота несущей (2000...2500 МГц) выбирается из условия малого влияния на передаваемую информацию погодных условий. Возможны также варианты с использованием других диапазонов, расположенных как ниже, так и выше по оси частот. Полоса используемых частот, которая определяет достижимую скорость передачи, ограничена как из-за влияния помех, так и вследствие общей занятости радио-диапазонов. В результате максимальная скорость передачи по беспроводным линиям составляет примерно 2 Мбит/с. Следует заметить, что беспроводная связь на высоких частотах (свыше ~ 900 МГц) устойчиво работает только в условиях прямой видимости абонентов (отсутствия препятствий для радиоволн) на расстоянии до 50 км.
Линии передачи с использованием искусственных спутников Земли в качестве ретрансляторов сигналов в глобальных или региональных компьютерных сетях в целом напоминают наземные варианты беспроводных линий. Для передачи в разных направлениях теперь используются две частоты несущей: 6/4 ГГЦ (другой вариант – 14/12 ГГц). Однако скорость передачи обычно не превышает 50 Мбит/с.
Перечисление линий передачи, в которых применяются модемы, можно продолжить. Стоит упомянуть технологии HPNA (Ethernet на телефонной линии) и Bluetooth (высокоскоростная беспроводная технология). Однако разрешение вопроса о том, какая из упомянутых или еще «не заявившая» о себе технологий найдет широкое применение на практике – это проблема прогнозирования, которое не может дать ответ со 100-процентной гарантией по определению. Кроме ограниченной развитости линий (например, отечественные телевизионные кабельные сети), сдерживающими факторами могут быть технические особенности отдельных линий (в частности, ограничение области действия сети на основе силовой проводки пределами тех помещений, которые «питаются» от одного силового трансформатора).