С переходом на проблемно‑ориентированный подход ПО разрабатывается для целого класса машин на основе определённой концепции. Наибольшее распространение получили методы построения математической модели на основе обобщенной модели и эквивалентных схем
Первый метод заключается в создании обобщённой математической модели (ОММ), которая является формальной суммой всех возможных для данного класса устройств элементов и взаимосвязей между ними. Частная модель получается из ОММ простым удалением «лишних» для данного объекта элементов и связей. Естественно, что при достаточной простоте получения частной модели, задача создания законченной ОММ и её исследования представляет весьма значительную трудность.
В основе метода эквивалентных схем лежит идентичность математического описания процессов, происходящих в физически разнородных системах. Так уравнение механического движения массы
математически эквивалентно уравнению электрической ёмкости и уравнению сжимаемости жидкости . Таким образом, любая механическая или гидравлическая система может быть сведена к электрической и достаточно просто промоделирована как с помощью уже существующих средств моделирования электросхем, так и разработанных специально для данного реального класса объектов. Очевидное преимущество этого метода - возможность моделирования физически разнородных систем, как единой сложной однородной системы. Основной недостаток - ограничения, накладываемые на включение в систему нелинейных компонент, в результате чего эквивалентная электрическая схема моделируемого механического или гидравлического объекта многократно усложняется.В таблице 1.1 приведены аналогии между фазовыми переменными для различных физических подсистем.
Таблица 1.1 - аналогии между фазовыми переменными для различных физических подсистем
Подсистема | Поток | Потенциал | Базовый узел |
Электрическая | Ток | Электрический потенциал | Шина “земля” |
Механическая поступательная | Сила | Скорость | Неподвижная система отсчета |
Механическая вращательная | Момент силы | Угловая скорость | Неподвижная система отсчета |
Гидравлическая (пневматическая) | Расход | Давление | Атмосфера или абсолютный вакуум |
Тепловая | Тепловой поток | Температура | Окружающая среда или абсолютный нуль |
В таблице 1.2 приведены аналогии базовых двухполюсников для различных физических подсистем.
Таблица 1.2 - аналогии базовых двухполюсников для различных физических подсистем
Подсистема | Двухполюсники | |||
Типа C | Типа L | Типа G | Типа R | |
Электрическая | Емкость | Индуктивность | Сопротивление | |
Механическая поступательная | Масса | Упругость | Вязкое трение | |
Механическая вращательная | Момент инерции | Вращательная гибкость | Вязкое вращательное трение | |
Гидравлическая (пневматическая) | Гидравлическая емкость | Гидравлическая индуктивность | Гидравлическое сопротивление | |
Тепловая | Теплоемкость | Теплопроводность |
Применяя вышеописанные методы, были разработаны математические модели и программное обеспечение, позволяющее моделировать отдельные компоненты сложных динамических систем: гидравлического пресса как механического объекта, его гидросистемы, техпроцессов обработки металлов давлением. В настоящее время требуемая эффективность решения задачи моделирования технических объектов может быть обеспечена только системным подходом. Современный уровень развития компьютерной техники и технологии позволяет комплексно решить эту проблему на основе объектно‑ориентированного подхода (ООП), с применением которого возможна разработка объектно‑ориентированной библиотеки иерархии классов элементов систем практически любой степени сложности. При этом не возникает затруднений, связанных с взаимодействием объектов, программное обеспечение остается полностью открытым, возможна его модификация и дальнейшее развитие на базе уже созданного программного обеспечения.
Среди программных средств, могучей волной обрушившихся на пользователей персональных компьютеров немалую долю составляют инструментальные средства, предназначенные для бизнес-планирования и бизнес-моделирования. Они могут быть представлены как самостоятельные продукты либо как дополнения к программному обеспечению для презентаций или к другим программным средствам. Спектр подобных средств столь широк, что попытка выбрать для решения конкретной задачи оптимальный вариант очень сложна. Конечно, опытный человек способен сделать правильный выбор и скорее всего, выберет достаточно простой и уже известный либо ему, либо его друзьям инструмент. Менее опытный - скорее всего, предпочтёт новое ПО, в названии которого фигурируют непонятные, но такие многообещающие слова, как, например, "генетический", "интеллектуальный", "нейросетевой" и т. д. Попробуем непредвзято взглянуть на существующие инструментальные средства моделирования и, насколько это, возможно, выработать некоторые критерии, позволяющие облегчить выбор нужного программного продукта.
В настоящее время компьютерная промышленность предлагает современному инженеру целый ряд разнообразных средств моделирования, позволяющих не только моделировать сложные динамические системы, но и проводить с ними эксперименты. Некоторые элементы анализа динамических процессов так же включаются в состав CAD систем. Например, SolidWorks. В данной системе имеется модуль Dynamic. Этот модуль позволяет визуализировать процесс работы механизма, а любой элемент механизма можно выбрать в интерактивном режиме и выполнить расчёт в CAE системе Cosmos. Наиболее полное исследование общесистемных проблем получается в результате моделирования объектов с помощью современных технологий, реализованных в специализированных вычислительных пакетах или пакетах визуального моделирования. На сегодня существует огромное число пакетов визуального моделирования. В них пользователю предоставляется возможность описывать моделируемую систему преимущественно в визуальной форме, например, графически представляя как структуру системы, так и ее поведение (например, при помощи карты состояний). Такой подход позволяет пользователю не заботится о реальной программной реализации модели, что значительно упрощает процесс моделирования. Результаты эксперимента в пакетах визуального моделирования предоставляются в более наглядной для человека форме: в виде графиков, гистограмм, схем, с применением анимации и т.д. Также в той или иной мере поддерживается технология объектно-ориентированного моделирования, что позволяет повторно использовать экземпляры моделей с возможностью внесения в них тех или иных корректив. Из множества существующих на сегодняшний день пакетов визуального моделирования особый интерес вызывают универсальные пакеты, не ориентированные на определенную узкоспециальную область (физика, химия, электроника и т.д.) или определенные типы моделей (чисто дискретные или чисто непрерывные), а позволяющие моделировать принадлежащие различным прикладным областям структурно - сложные гибридные системы. Несмотря на то, что современные универсальные пакеты визуального моделирования обладают рядом общих свойств (позволяют строить из блоков функциональные иерархические схемы, предоставляют пользователю схожие библиотеки численных методов, средства визуализации поведения и наборы анимационных возможностей, поддерживают технологию объектно-ориентированного моделирования). Одним из таких пакетов является пакет AnyLogic. AnyLogic – новая среда для виртуального прототипирования сложных систем с дискретным, непрерывным или гибридным поведением, разработанная компанией Experimental Object Technologies на базе систем COVERS и ModelVision. AnyLogic позволяет быстро создавать исполняемую модель – виртуальный прототип – разрабатываемой системы и ее окружения, в том числе физические объекты и поведение пользователей.