Назрела необходимость в разработке «нового» Ethernet, то есть технологии, которая была бы такой же эффективной по соотношению цена/качество при производительности 100 Мбит/с. В результате поисков и исследований специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий — Fast Ethernet и 100VG-AnyLAN. Они отличаются степенью преемственности с классическим Ethernet.
Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же.
Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:
• волоконно-оптический многомодовый кабель, используются два волокна;
• витая пара категории 5, используются две пары;
• витая пара категории 3, используются четыре пары.
Официальный стандарт 802.3и установил три различных спецификации для физического уровня Fast Ethernet и дал им следующие названия:
• 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Туре 1;
• 100Base-T4 для четырехпарного кабеля на неэкранированной витой паре UTP категории 3, 4 или 5;
• 100Base-FX для многомодового оптоволоконного кабеля, используются два волокна.
Форматы кадров технологии Fast Ethernetae отличаются от форматов кадров технологий 10-мегабитного Ethernet.
Технология Fast Ethernet сохранила в неприкосновенности метод доступа CSMA/CD, оставив в нем тот же алгоритм и те же временные параметры в битовых интервалах (сам битовый интервал уменьшился в 10 раз). Все отличия Fast Ethernet от Ethernet проявляются на физическом уровне.
Максимальный диаметр сети Fast Ethernet равен приблизительно 200 м, а более точные значения зависят от спецификации физической среды.
2.7. 1000 Мбитный стандарт Ethernet.
Достаточно быстро после появления на рынке продуктов Fast Ethernet сетевые интеграторы и администраторы почувствовали определенные ограничения при построении корпоративных сетей. Во многих случаях серверы, подключенные по 100-мегабитному каналу, перегружали магистрали сетей, работающие также на скорости 100 Мбит/с — магистрали FDDI и Fast Ethernet. Ощущалась потребность в следующем уровне иерархии скоростей.
Летом 1997 года было объявлено о создании группы 802.3z для разработки протокола, максимально подобного Ethernet, но с битовой скоростью 1000 Мбит/с.
Основная идея разработчиков стандарта Gigabit Ethernet состоит в максимальном сохранении идей классической технологии Ethernet при достижении битовой скорости в 1000 Мбит/с.
Сохраняются все форматы кадров Ethernet.
По-прежнему существуют полудуплексная версия протокола, поддерживающая метод доступа CSMA/CD, и полнодуплексная версия, работающая с коммутаторами.
Поддерживаются все основные виды кабелей, используемых в Ethernet и Fast Ethernet: волоконно-оптический, витая пара категории 5, коаксиал.
Стояло несколько трудно разрешимых проблем:
1. обеспечение приемлемого диаметра сети для
полудуплексного режима работы;
2. достижение битовой скорости 1000 Мбит/с на основных
типах кабелей;
3. поддержка кабеля на витой паре.
Для расширения максимального диаметра сети Gigabit Ethernet в полудуплексном режиме до 200 м разработчики увеличили минимальный размер кадра до 4096 байт (с одним повторителем).
В стандарте 802.3z определены следующие типы физической среды:
- в одномодовый волоконно-оптический кабель;
- в многомодовый волоконно-оптический кабель 62,5/125;
- в многомодовый волоконно-оптический кабель 50/125;
- в двойной коаксиал с волновым сопротивлением 75 Ом.
2.8.Типы коммуникационного оборудования Ethernet
2.8.1. Сетевой адаптер.
Сетевой адаптер (Network Interface Card, NIC) вместе со своим драйвером реализует второй, канальный уровень модели открытых систем в конечном узле сети — компьютере.
Сетевой адаптер совместно с драйвером выполняют две операции: передачу и прием кадра.
2.8.2.Повторитель. Концентратор (hab).
Практически во всех современных технологиях локальных сетей определено устройство, которое имеет несколько равноправных названий — концентратор (concentrator), хаб (hub), повторитель (repeator). В зависимости от области применения этого устройства в значительной степени изменяется состав его функций и конструктивное исполнение. Неизменной остается только основная функция — это повторение кадра либо на всех портах (как определено в стандарте Ethernet), либо только на некоторых портах, в соответствии с алгоритмом, определенным соответствующим стандартом.
Концентратор обычно имеет несколько портов, к которым с помощью отдельных физических сегментов кабеля подключаются конечные узлы сети — компьютеры.
Рис.8.1 Повторитель Ethernet синхронно повторяет биты кадра на всех своих портах
Многопортовые повторители Ethernet на витой паре стали называть концентраторами или хабами, так как в одном устройстве действительно концентрировались связи между большим количеством узлов сети. Концентратор Ethernet обычно имеет от 8 до 72 портов, причем основная часть портов предназначена для подключения кабелей на витой паре. Концентратор (hab) получает информацию на один порт и передаёт на все остальные порты (через простейший коммутатор). Проблема в том , независимо от необходимости в информации её получают все порты. Концентраторы образуют из отдельных физических отрезков кабеля общую среду передачи данных - логический сегмент (рис.8.2.1.). Логический сегмент также называют доменом коллизий, поскольку при попытке одновременной передачи данных любых двух компьютеров этого сегмента, хотя бы и принадлежащих разным физическим сегментам, возникает блокировка передающей среды. Следует особо подчеркнуть, что какую бы сложную структуру не образовывали концентраторы, например, путем иерархического соединения, все компьютеры, подключенные к ним, образуют единый логический сегмент, в котором любая пара взаимодействующих компьютеров полностью блокирует возможность обмена данными для других компьютеров. Чем больше активных пользователей в сети , тем медленнее работает сеть. Концентраторы, кроме основной функции протокола (побитного повторения кадра на всех или последующем порту), всегда выполняют ряд полезных дополнительных функций, определяемых производителем конценратора.
Автосегментация — одна из важнейших дополнительных функций, с помощью которой концентратор отключает порт при обнаружении разнообразных проблем с кабелем и конечным узлом, подключенным к данному порту. В число дополнительных функций входят функции защиты сети от несанкционированного доступа, запрещающие подключение к концентратору компьютеров с неизвестными МАС-адресами, а также заполняющие нулями поля данных кадров, поступающих не к станции назначения.
2.8.3.Мост (dridge).
Сети, построенные на основе концентраторов, не могут расширяться в требуемых пределах - при определенном количестве компьютеров в сети или при появлении новых приложений всегда происходит насыщение передающей среды, и задержки в ее работе становятся недопустимыми. Эта проблема может быть решена путем логической структуризации сети с помощью мостов, коммутаторов и маршрутизаторов. У моста только два порта.
Мост (bridge) делит общую среду передачи данных на логические сегменты (или сеть на подсети). Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент (подсеть) подключается к отдельному порту моста (рис. 4). При поступлении кадра на какой-либо из портов мост повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.
Рис.8.2 Разделение сети на логические сегменты
При работе моста среда передачи данных каждого логического сегмента (подсети) остается общей только для тех компьютеров, которые подключены к этому сегменту непосредственно. Мост осуществляет связь сред передачи данных различных логических сегментов. Он передает кадры между логическими сегментами только при необходимости, то есть только тогда, когда взаимодействующие компьютеры находятся в разных сегментах. Деление сети на логические сегменты улучшает производительность сети, если в сети имеются группы компьютеров, преимущественно обменивающиеся информацией между собой. То есть мост фильтрует данные между подсетями.
У мостов есть таблица MAC – адресов и портов. В момент загрузки сети эта таблица пуста. При посылке информации по сети эта таблица заполняется (т.е. мост обучается) и в дальнейшем через порт моста проходит только информация для обмена между подсетями. Если окажется, что компьютеры принадлежат одной подсети, то кадр просто будет удален из буфера и работа с ним на этом бы закончится. Такая операция называется фильтрацией (filtering).
Если же адрес назначения неизвестен, то мост передает кадр на все свои порты, кроме порта — источника кадра, как и на начальной стадии процесса обучения.
Мосты, работающие описанным способом, обычно называются прозрачными (transparent), поскольку появление таких мостов в сети совершенно не заметно для ее конечных узлов. Это позволяет не изменять их программное обеспечение при переходе от простых конфигураций, использующих только концентраторы, к более сложным, сегментированным.