Отметим, что при вычислениях условных средних значений, а также других математических характеристик признаков
Значения
где
В нижней строке и в последнем столбце таблицы представлены условные средние значения, вычисленные по формулам:
Рассмотрим линейную связь
2) Вычисление коэффициента корреляции, нахождение уравнения регрессии.
Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо, в среднем, может быть представлена одна из величин в виде линейной функции от другой.
Коэффициент корреляции по абсолютной величине не превосходит 1. Чем ближе
Так, расчёт коэффициента корреляции по группированным данным, выполняется по формуле
где
Все величины в этих формулах должны быть взяты из корреляционной таблицы.
Уравнение прямой линии, относительно которой наилучшим образом расположены условные средние значения
Величины, входящие в уравнение (4), могут быть найдены по данным, объединённым в группы.
При вычислениях по группированным данным величины
Уравнение линейной регрессии может быть найдено методом наименьших квадратов. В случае двух переменных
Неизвестные параметры
Найдя частные производные данного выражения по
Данная система линейных алгебраических уравнений может быть решена матричным методом или методом Крамера.
3) Вычисление коэффициента детерминированности
Для количественной оценки соответствия теоретической линии регрессии эмпирическим данным используется коэффициент детерминированности
где
где
Обычно коэффициент детерминированности лежит между 0 и 1. Чем ближе этот коэффициент к 1, тем лучше найденная линия регрессии представляет экспериментальные данные, положенные в основу расчётов.
1.4 Разработка алгоритма решения задачи
Чтобы решить поставленную задачу, необходимо воспользоваться следующим алгоритмом:
1) По результатам наблюдений двух измеримых признаков (X,Y) построить вспомогательную ( корреляционную ) таблицу, распределив значения X,Y на 5-6 интервалов. Найти условные средние значения
2) Вычислить значение коэффициента корреляции по группированным данным, используя формулы.
3) Найти уравнение регрессии, используя формулы.
4) Найти уравнение регрессии методом наименьших квадратов.
5) По данным значениям переменных построить точечную диаграмму, указать на ней линию тренда. При построении линии тренда с помощью вкладки «Параметры» показать на диаграмме уравнение линии тренда и величину R2.
6) Найти теоретические значения Y, подставив данные значения xi в уравнение регрессии, найденное в пункте 3.
7) Построить графики условных средних значений
8) Найти коэффициент детерминированности для уравнения регрессии, найденного в пункте 3.
9) Найти коэффициент детерминированности для уравнения регрессии, найденного в пункте 3.
2. Контрольный вариант