Смекни!
smekni.com

Курс лекций по линейному программированию (стр. 6 из 6)

Для расширения трех предприятий фирма выделила 5000000$. Каждое предприятие предоставляет проект в котором С – суммарные издержки, R – доходы. Цель фирмы – получить максимальную прибыли от инвестиций.

проекты

I

II

III

C1

R1

C2

R2

C3

R3

1 0 0 0 0 0 0
2 1 5 2 8 1 3
3 2 6 3 9 - -
4 - - 4 12 - -

1. Сетевая модель

Для построения сети следует определить этапы решения задач: каждому из предприятий ставят в соответствие некоторый этап, т.к. требуется выбратя оптимальный проект для каждого предприятия. Этапы связаны между собой посредством ограничений объема инвестиций.

х1 – объем инвестиций, распределяемых на первом этапе

х2 – объем инвестиций, распределяемых на первом и втором этапах

х3 – объем инвестиций, распределяемых на первом, втором и третьем этапах.

Эначение х1 и х2 – заранее неизвестны, но они могут принимать значения из 1, 2, 3, 4, 5. х3 = 5

Каждому из возможных значений х1, х2, х3 поставляется в соответствие узел, ассоциируемый с одним из этапов (j=1, j=2 j=3).

Длины дуг, соединяющие узлы на некотором этапе с узлами на последующем этапе численно равны доходам от реализации лучшего проекта. Величина (х2 – х1) = объему инвестиций, распределенных только на втором этапе, следовательно дуга х1, х2 является допустимой лишь для проектов, затраты на реализацию которых не превышают (х2 – х1) и длина этой дуги = max (R) для всех таких проектов.

Рассмотрим дугу L U

Из первого этапа во второй, следовательно между 1 и 2 предприятиями распределяет 4000000$, из них 2000000$ во второе и 2000000$ в первое.

На последнем этапе распределяется 5000000$. Из них 3000000 – в 1 и 2 предприятия; 2000000$ - в 3 предприятие.

По аналогии с сетевыми графиками максимальный доход соответствующий самому длинному пути с этапа G0 до этапа G3.

Регулентные соотношения.

Расчеты на некотором этапе осуществляются на базе сводной информации о максимальном суммарном доходе (суммарном длинном пути, полученном в результате вычисления кроме всех предшествующих этапов). Все последующие решения строятся оптимальным образом, независимо от решений, полученных на предшествующих этапах.

Это отражает сущность принципа оптимальности Баумана составляет основу вычисление схемы ДП.