Все существующие в действительности цифровые вычислительные машины обладают лишь конечной памятью. Однако теоретически нетрудно представить себе машину с неограниченной памятью. Разумеется, в любой данный момент времени возможно использование только конечной части запоминающего устройства. Точно так же запоминающее устройство, которое можно физически осуществить, всегда имеет конечные размеры, но мы можем представлять дело так, что по мере надобности к нему пристраиваются все новые и новые части. Такие вычислительные машины представляют особый теоретический интерес, и впредь мы будем их называть машинами с бесконечной емкостью памяти.
Сама идея цифровой вычислительной машины отнюдь не является новой. Чарлз Бэббидж, занимавший с 1828-го по 1839 г. Люкасовскую кафедру по математике в Кембридже, разработал проект вычислительного устройства, названного им «Аналитической машиной»; создание ее, однако, так и не удалось завершить. Хотя у Бэббиджа были все основные идеи, существенные для создания такого механизма, его машина не имела перспектив. Скорость вычислений, которую позволила бы достичь машина Бэббиджа, оказалась бы, разумеется, выше скорости, достигаемой человеком, однако она была бы почти в 100 раз меньше, чем у той вычислительной машины, которая в настоящее время работает в Манчестере[5] и которая является одной из самых медленных современных машин. Запоминающее устройство в машине Бэббиджа было задумано как чисто механическое, с использованием карт и зубчатых колес.
То, что Аналитическая машина Бэббиджа была задумана как чисто механический аппарат, помогает нам избавиться от одного предрассудка. Часто придают значение тому обстоятельству, что современные цифровые машины являются электрическими устройствами и что нервную систему человека в некотором смысле можно отождествить с электрическим устройством. Но, поскольку машина Бэббиджа не была электрическим аппаратом и поскольку в известном смысле все цифровые вычислительные машины эквивалентны, становится ясно, что использование электричества в этом случае не может иметь теоретического значения. Естественно, что там, где требуется быстрая передача сигналов, обычно появляется электричество, поэтому неудивительно, что мы встречаем его в обоих указанных случаях. Для нервной системы химические явления играют по крайней мере столь же важную роль, что и электрические. В некоторых же вычислительных машинах запоминающее устройство в основном акустическое. Отсюда ясно, что сходство между нервной системой и цифровыми вычислительными машинами, состоящее в том, что в обоих случаях используется электричество, сводится лишь к весьма поверхностной аналогии. Если мы действительно хотим открыть глубокие связи, нам скорее следует искать сходство в математических моделях функционирования нервной системы и цифровых вычислительных машин.
Классификация ЦВМ
В настоящее время исторически определились два основных класса ЦВМ: машины, собранные на электронных лампах, и машины, собранные на полупроводниковых и ферритовых элементах.
При этом для ламповых схем цифровой техники достигнуто среднее быстродействие порядка нескольких мегагерц, для транзисторных - несколько десятков мегагерц, для ферритовых - сотни килогерц. Дальнейшие поиски методов повышения быстродействия, связанные с построением ЦВМ новых типов, логически приводят к освоению элементов сантиметрового, миллиметрового и микронного диапазонов длин волн.
Применение таких элементов, время переключения которых измеряется наносекундами и долями наносекунд, позволяет повысить быстродействие и надежность вычислительных машин, снизить их стоимость (в пересчете на одну вычислительную операцию), энергопотребление и габариты.
Отмечается, что по предварительным оценкам ЦВМ новых типов при серийном производстве будут стоить в 2-3 раза дороже, но действовать в 10-100 раз быстрее. Проблемы, возникающие при построении ЦВМ на элементах наносекундного диапазона, связаны с особенностями характеристик существующих элементов, а также со спецификой их конструктивной реализации и заключаются в следующем: 1. Значительные размеры логических элементов, собранных из сосредоточенных емкостей, сопротивлений, диодов и триодов, приводят к появлению в схемах паразитных резонансных контуров с собственной частотой порядка 300-400 МГц.
Таким образом, тактовая частота самих элементов не должна превосходить 60-80 МГц (приблизительно Vs резонансной частоты). Для дальнейшего повышения быстродействия приходится либо уменьшать габариты цепей с сосредоточенными постоянными, либо переходить к цепям с распределенными параметрами; в обоих случаях необходима миниатюризация отдельных элементов.
Применение электронных схем с потенциально-импульсным представлением информации также ограничивает возможности повышения быстродействия узлов и устройств ЦВМ. Это связано с тем, что в случае видеоимпульсных сигналов для передачи информации требуются широкополосные линии связи, обеспечивающие передачу частот, близких к нулевым, и, следовательно, обладающие значительными постоянными времени.
При тактовых частотах порядка нескольких сотен мегагерц на быстродействие ЦВМ накладывает определенные ограничения запаздывание сигналов при распространении электрических импульсов по соединительным трактам. Это обусловлено тем, что реализация сложных логических схем даже при применении наиболее совершенных радиотехнических приборов и средств монтажа приводит ,к построению многокаскадных электрических цепей, имеющих значительную протяженность.
Если учесть, что распространение электрических сигналов в линиях связи происходит со скоростью 20-25 см/нсек, то, для того чтобы временем запаздывания сигналов можно было пренебречь, длина соединительных проводов не должна превышать 2-2,5 см (в случае применения элементов с временем переключения порядка одной наносекунды).
Таким образом, соизмеримость времени распространения электрических сигналов по соединительным проводам с временем переключения быстродействующих логических элементов обусловливает необходимость перехода к одному из следующих трех возможных путей построения быстродействующих ЦВМ:
Резкое уменьшение габаритов вычислительного устройства в целом, т. е. переход к микроминиатюрным приборам и элементам; проектирование логических схем устройств ЦВМ с учетом разброса времен переключения отдельных элементов и возможного запаздывания (задержки) сигналов в отдельных каскадах;
Это существенно усложняет задачу обеспечения правильного взаимодействия узлов и блоков вычислительного устройства как в процессе проектирования, так и при отладке готового образца; 3) применение в качестве логических элементов приборов с распределенным взаимодействием, в которых реализация логической операции происходит не в дискретном объеме (переключающем приборе),
Соединяемом с источником входного сигнала пассивным каналом передачи информации, а в процессе распространения импульса по прибору. Примером подобного типа устройств могут служить логические схемы, использующие оптические квантовые генераторы на стеклянных волокнах: оптическое волокно одновременно может служить и каналом передачи информации и генераторов сигналов.
Список использованной литературы:
1 Аналоговые, цифровые и аналого-цифровые вычислительные машины [электронный ресурс] : Ремонт компьютерной техники . – режим доступа: http://www.tehnorem.ru/news/2009-10-26-99
2 Алан Тьюринг : Могут ли машины мыслить? [ электронный ресурс]: Популярное в библиотеке FictionBook / Литрес. – 2009. – режим доступа: http://fictionbook.ru/author/alan_tyuring/mogut_li_mashiniy_miyslit/read_online.html?page=4
3 Большая советская энциклопедия: цифровая вычислительная машина [электронный ресурс]: словари и энциклопедии онлайн. – режим доступа: http://www.diclib.com/
4 Вычислительные машины: два основных класса ЦВМ [ электронный ресурс]: школа электроники и информатики. – М. : 2010. – режим доступа: http://segail.ru/