comp – имя корректирующего звена (компенсатора);
LocationFlag – переменная, задающая позицию компенсатора в системе: 1 – в прямом тракте системы, 2 – в цепи обратной связи;
FeedbackSign – тип обратной связи: -1 – отрицательная обратная связь, 1 - положительная обратная связь.
Но удобнее работать с окном интерфейса SISO Design for System FeedbackConfig.
Выполнение функции rltool без аргументов приводит к появлению
основного окна интерфейса SISO Design for System FeedbackConfig, реализующего метод корневого годографа (Рис. 3. 13). Кнопка +/- позволяет установить отрицательную (-) обратную связь. Кнопка FS позволяет выбрать структуру системы и позицию компенсатора в системе.Выберем структуру с расположением компенсатора «С» в прямом тракте системы (Рис. 3. 13) и отрицательную обратную связь. Далее необходимо задать модели звеньев структурной схемы: «F», «C», «G», «H». Для этого следует сделать следующее:
В меню окна интерфейса SISO Design for System FeedbackConfig необходимо выполнить команды: File Import. В открывшемся окне (Рис. 3. 14) загрузки модели Import System Data выберем модель sysn4s. Переключатель Import from указывает, из какой области загружается модель. Модель sysn4s находится в рабочей области MATLAB, т. е. в Workspace. В поле System Data окна Import System Data (Рис. 3. 14) обозначена структурная схема замкнутой системы. В ней «F», «G», «H» звенья модели которые можно загружать. Звено, обозначенное буквой «С», это то компенсирующее динамическое звено структуру и параметры которого нужно определить.
Рис. 3. 13. Окна интерфейса SISO Design for System FeedbackConfig
.
Рис. 3. 14. Окно загрузки модели Import System Data
Далее необходимо выполнить загрузку модели технического объекта управления sysn4s в звено «G» нажатием кнопки со стрелкой, указывающей на звено «G». Модели звеньев «F» и «H» выберем по умолчанию (это пропорциональные звенья с единичным коэффициентом передачи). Сохраним, полученную модель под именем mysys1. Подтвердим сохранение нажатием кнопки ОК. Окно загрузки при этом закроется, а основное окно интерфейса приобретет вид, показанный на рис. 3. 15.
Рис. 6. 15. Основное окно интерфейса SISO Design for System mysys1
В графической части окна на комплексной плоскости нулей и полюсов отображены полюсы и нули замкнутой системы, а также линии их перемещения при изменении коэффициента передачи компенсатора от заданного значения до бесконечности. Система имеет три полюса и два нуля (это подтверждается видом аналитического выражения передаточной функции ТОУ, которую можно просмотреть, если щелкнуть ЛК на блоке «G» структурной схемы замкнутой системы и в открывшемся окне System Data в поле Plant Model : sysn4s нажать кнопку Show Transfer Function). Передаточная функция имеет в числителе полином второй степени, а в знаменателе полином третьей степени.
Из расположения полюсов (крестики) на комплексной плоскости следует, что замкнутая система достаточно устойчива, так как все три полюса находятся в левой полуплоскости и достаточно далеко от границы
устойчивости. В этом еще можно убедиться, просмотрев график переходного процесса замкнутой системы, если в меню Analysis выполнить команду Response to Step Command. Данный выбор приведет к открытию окна интерактивного обозревателя LTI-Viewer for SISO Design Tool (Рис. 3. 16). Как видно из графика сходящегося переходного процесса (кривая r to y) время переходного процесса достаточно мало (с данным корректирующим звеном пропорционального типа с коэффициентом пропорциональности равным единице). Система устойчива.Однако следует отметить, что при явной устойчивости системы наблюдается некоторое перерегулирование переходного процесса. Следовательно, можно попытаться скорректировать переходный процесс, сделав его апериодическим, т. е улучшить динамические свойства системы. Сделать это можно путем подбора передаточной функции компенсирующего звена «С».
Рис. 3. 16. Графики переходных процессов в системе
расположенных над графическим окном.
В поле Current Compensator окна SISO Design for System mysys4 отразится текущая передаточная функция компенсатора. Необходимо также помнить, что после выполнения меню Analysis в произведенной сессии дальнейшие изменения в структуре системы не будут отражены в результатах повторного выполнения меню Analysis. Поэтому для дальнейшего анализы при коррекции системы необходимо загружать новое окно интерфейса, выполнив повторно в режиме командной строки функцию rltool.
Далее необходимо выполнить анализ построенной замкнутой системы управления с целью определения ее параметров и, сравнив их с заданными в техническом задании параметрами, сделать вывод о необходимости корректировки системы или убедиться в отсутствии такой необходимости. Просмотреть все характеристики можно выполнив в меню Analysis окна SISO Design for System mysys4 команды: Response to Step Command; Rejection of Step Disturbance; Closed-Loop Bode; Compensator Bode; Open-Loop Nyquist. После выполнения команд появится окно обозревателя LTIViewer (Рис. 3. 17)
Рис. 3. 17. Окно обозревателя LTIViewer
При выполнении в меню Tools команды Draw Simulink Diagram (изобразить диаграмму Simulink) можно перейти к моделированию функциональной схемы в среде Simulink (Рис. 3. 18).
Рис. 3. 21. Переход в среду Simulink
Таким образом, в пункте 3. 1. 3 мы освоили алгоритм построения структурной схемы замкнутой системы управления. Оценили устойчивость системы. Полученные навыки используем для формирования и оптимизации системы управления ТОУ (выбранного варианта объекта управления). Рассмотрим процесс построения и оптимизации системы управления сушилки клинкера (модель сушилки уже получена – это модель sysn4s).
3. 2. Построение структуры системы автоматического регулирования
установки обжига клинкера
Необходимым условием надежной устойчивой работы автоматизированной системы регулирования является правильный выбор типа регулятора и его настроек, гарантирующий требуемое качество регулирования. В зависимости от свойств объектов управления, определяемых его передаточной функцией и параметрами, и предполагаемого вида переходного процесса выбирается тип и настройка линейных регуляторов.
Согласно исходных данных переходный процесс должен быть апериодическим с малым временем регулирования и малым перерегулированием.
На основании заданных значений передаточных функций датчика, усилительно-преобразовательного устройства, исполнительного механизма (справочные данные) и построенной модели объекта регулирования sysn4s выполним в SIMULINK построение замкнутой системы автоматического регулирования обжига клинкера.
Предварительный вариант системы автоматического регулирования уже получен. Система оптимизирована по характеру переходного процесса и представлена в среде Simulink (Рис. 6. 22). Необходимо скорректировать полученную Simulink-модель системы, включив в нее недостающие элементы: модель датчика, модель усилительно-преобразовательного устройства и модель исполнительного механизма.
Структурно - функциональная блок-схема системы автоматического регулирования представлена на рис. 3. 22.
3 22. Структурно - функциональная блок-схема системы автоматического регулирования
ЗС – задающий сигнал; Р – регулятор; УПУ – усилительно - преобразовательное устройство; ИМ – исполнительный механизм; ОУ – объект управления; ДОС – датчик обратной связи.
В соответствии со структурно-функциональной блок-схемой (Рис. 3. 20) системы автоматического регулирования выполним коррекцию топологии Simulink-модели системы (Рис. 3 21, дополнив ее блоками, имеющими передаточные функции в соответствие со справочными данными: Wдос = 0.4, Wупу =15(0.22 + 1); Wим = 0.19(0.37 + 1) и включим в качестве задающего сигнала единичный скачек (блок Step, Рис. 3 23.)