Рис. 2. 13. График автокорреляционной и взаимокорреляционной функций для модели zbj
Рис. 2. 14. График автокорреляционной и взаимокорреляционной функций для модели darx
После выполнения функции:
[e,r]=resid(zdan,darx)
MATLAB возвращает:
Time domain data set with 1097 samples.
Sampling interval: 0.08
Outputs Unit (if specified)
e@температура гр.С 100
Inputs Unit (if specified)
u1
r =
1.0e+003 *
Columns 1 through 8
0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000
0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000
0.0002 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 0.0000
Columns 9 through 16
-0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
-0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000Columns 17 through 24
-0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
-0.0000 -0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000
0.0000 0.0000 -0.0000 -0.0000 0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
Columns 25 through 27
0.0000 1.0970 0.0010
-0.0000 0 0
0.0000 0 0
-0.0000 0 0
После выполнения команды >> resid(r) выводится график автокорреляционной и взаимокорреляционной функций для модели.
Таким образом, в ходе оценки адекватности различных моделей объекта автоматизации технологического процесса тепловой обработки материалов определены модели darx, zn4s и zpem, значения критерия адекватности которых максимальны и, следовательно, могут быть использованы в дальнейшем при анализе и синтезе систем автоматизации.
2. 11. Анализ модели технического объекта управления
Для анализа модели ТОУ возьмем модель zn4s, имеющую один из наилучших показателей адекватности.
• zzn4s – дискретная модель в виде передаточной функции
0.1327 z^2 + 0.1566 z + 0.0575
------------------------------------
z^3 - 0.3799 z^2 - 0.281 z + 0.07493
• sysn4s – непрерывная модель в виде передаточной функции
-0.891 s^2 + 77.33 s + 746.9
---------------------------------
s^3 + 32.39 s^2 + 308.9 s + 891.7
Приведенные виды являются одной и той же моделью, записанной в разных формах и форматах. Проанализируем динамические характеристики модели. Построим переходную характеристику ТОУ для дискретной и непрерывной моделей и определим основные показатели переходного процесса. Для этого можно воспользоваться функцией step. Функция step рассчитывает и строит реакцию модели на единичную ступенчатую функцию, т. е. возвращает переходную функцию системы:
step(sys)
step(sys, t)
step(sys1,sys2,….,sysN, t)
step(sys1,’PlotStyle1’,….,sysN, ’PlotStyleN’)
[y,t,x] = step(sys)
Д
ля моделей, заданных в пространстве состояний, начальные условия принимаются нулевыми. Аргументы функции следующие:Для дискретных моделей значение dt должно равняться интервалу дискретизации, для непрерывных моделей – быть достаточно малым, чтобы учесть наиболее быстрые изменения переходного процесса;
Возвращаемые величины:
Выполним построение переходной характеристики ТОУ, представленной дискретной zzn4s инепрерывной sysn4s моделями и определим основные показатели переходного процесса, используя функцию step:
>>step(zzn4s,sysn4s)
После выполнения команды step MATLAB возвращает графики переходного процесса (Рис. 2. 15). Нажатие левой клавиши мыши в любом месте на графике переходного процесса приводит к появлению всплывающей информационной подсказки о величине текущего численного значения переходного процесса и моменте времени.
Нажатие правой клавиши в любом месте на графике переходного процесса приводит к появлению всплывающего меню редакции окна всплывающей информационной подсказки.Рис.2. 15. Графики переходных процессов модели zzn4s и sysn4s
На графиках переходных процессов ступенчатой линией представлен переходной процесс дискретной модели, а сплошной линией – непрерывной модели. Кроме того, в поле графика указаны основные характеристики переходного процесса:
• время регулирования (Setting time) – 0,769 с для обоих моделей;
• установившееся значение выходной координаты – 0,838 для обеих моделей.
Для построения импульсной характеристики моделей необходимо воспользоваться командой:
>>impulse(zzn4s,sysn4s).
После выполнения команды impulse MATLAB возвращает графики (Рис. 2. 16).
Основными характеристиками модели ТОУ при подаче на вход единичного импульсного воздействия являются:
• пиковая амплитуда (Peak amplitude) составляет для дискретной модели 0,207 а для непрерывной – 2,79.
• время регулирования составляет для дискретной модели 0,922 и для непрерывной модели – 0,863 с.
Для определения статического коэффициента усиления модели ТОУ можно использовать команду dcgain:
>> k=dcgain(sysn4s)
После выполнения команды получим: k = 0.8376.
Рис. 2. 16. Графики импульсной характеристики
Для определения частотной характеристики моделей используем команду bode:
Рис.2. 17. Частотные характеристики моделей
Выполним построение частотной характеристики ТОУ, представленной дискретной zzn4s и непрерывной sysn4s моделями (Рис. 2. 17).
Н
а графиках частотных характеристик указаны значения запасов устойчивости по амплитуде (Gain Margin), которые для дискретной модели составляет 29,7 dB, а для непрерывной модели – бесконечность.Значения запасов устойчивости можно определить также и в режиме командной строки MATLAB с помощью команд:
>> [Gm,Pm,Wcg,Wcp]=margin(sysn4s) – для непрерывной модели:
MATLAB возвращает:
Gm =
26.5077
Pm =
Inf
Wcg =
48.5667
Wcp =
NaN
>> [Gm1,Pm1,Wcg1,Wcp1]=margin(zzn4s) – для дискретной модели:
MATLAB возвращает:
Gm1 =
9.0385
Pm1 =
Inf
Wcg1 =
21.0461
Wcp1 =
NaN
где Gm – запас устойчивости по амплитуде в натуральных величинах на частоте Wcg, Pm – запас устойчивости по фазе на частоте Wcp.
Для определения запасов устойчивости в логарифмическом масштабе необходимо выполнить следующие операции:
>> Gmlog=20*log10(Gm1) – для дискретной модели:
Gmlog =
19.1219
>> Gmlog=20*log10(Gm) – для непрерывной модели:
Gmlog =
28.4675
Как видно, определение запасов устойчивости последним способом позволяет значительно точнее вычислять эти значения, чем на графиках частотных характеристик. Анализ частотных характеристик показывает, что модели zzn4s и sysn4s являются устойчивыми с соответствующими запасами устойчивости по амплитуде. Запас устойчивости по фазе равен бесконечности.
Этот вывод подтверждается так же комплексной амплитудно-фазовой характеристикой АФХ (называется диаграммой Найквиста, Рис. 2. 18), так как годограф АФХ не пресек
ает точку комплексной плоскости с координатами –1, j0.Рис.2. 18. Годограф АФХ для непрерывной и дискретной моделей
Для построения АФХ необходимо воспользоваться командой:
>>nyquist(zzn4s,sysn4s),
Определить устойчивость моделей можно с помощью карты нулей и полюсов по расположению нулей моделей относительно окружности с единичным радиусом на комплексной плоскости, как это было показано на рис. 2. 10. Построить карту нулей и полюсов моделей можно так же с помощью команды pzmap(zzn4s,sysn4s), либо – pzmap(zn4s,sn4s).
Построим график изменения e(t) и определим основные статистические характеристики помехи с помощь команды plot (e) (Рис. 2. 19).
Для получения статистических характеристик необходимо в строке меню графика в позиции Tools выбрать опцию Data statistics. Результатом выполнения команды явится окно, в котором будут указаны основные статистические характеристики случайного процесса изменения во времени e(t),(Рис. 2. 20), к которым относятся:
• min и max – минимальное и максимальное значения помехи.
Для нашего случая – -0,2373 и 0,2086 соответственно;
• mean – арифметическое среднее значение (0,001403);
• median – медиана процесса (0,003994);
• std – среднеквадратическое отклонение (0,0805);
• range – диапазон изменения помехи от минимального до максимального значения (1.12).Во всех случаях размерность аддитивной помехи такая же, как и выходная величина объекта автоматизации – оС.
Рис. 5. 19. График аддитивной помехи e(t)
Рис. 5. 20. Статистические характеристики e(t)