На более низких уровнях иерархии структуры в универсальных ЭВМ резервирование на уровне периферийных устройств (ПУ), к.т. ПУ м.б. полностью использованы для ввода, вывода, запоминания большого количества информации. При небольшом количестве информации можно пользоваться одним ПУ. Достаточность ПУ с учетом возможных отказов целесообразно оценить через эффективную производительность.
Если речь идет о получении показателя готовности системы, то надежность ПУ д.б. выражена через показатели надежности. В данном случае следует допустить, что для решения задачи требуется некоторое min-ое количество ПУ, а остальные ПУ являются скользящим резервом.
В ЭВМ нашли широкое применение коды с обнаружением и исправлением ошибок, для повышения надежности ОЗУ и ВЗУ. Применение таких кодов дает возможность исправлять определенное число ошибок в каналах передачи данных или восстанавливать информацию в случае отказа некоторых ячеек ВЗУ или дорожек (усилителей, записей и считывания) в накопителях на магнитных дисках. Надежность систем оценивается как надежность резервированных систем со скользящим резервом.
В специализированных и управляющих ЭВМ резервирование применяется значительно шире в связи с высокими требованиями, предъявляемыми к таким системам. Встречаются системы, где используется несколько резервных ЭВМ. В целях повышения надежности часть из них может работать в режиме нагруженного резерва, а честь – ненагруженного. Однако резервирование на уровне ЭВМ не самое экономичное. Для повышения надежности используется резервирование отдельных устройств ЭВМ: троированием или применение одного из нескольких нагруженных и или ненагруженных резервов. Для повышения надежности самых ответственных узлов применяется троирование или логика с переплетением.
Все рассмотренные методы резервирования в ВС относятся к пассивному резервированию, т.к. не предусматривают реконфигурацию системы.
Резервная система м.б. проста и наглядно представлена в виде связного графа (графа - надежности). Где вершины соответствуют подсистемам, а дуги – соединением между ними. Принимается, что отказ i-ой подсистемы соответствует обрыву i-ого ребра графа. Отказ системы- это потеря связности между двумя выделенными вершинами графа (полюсами).
Если считать что дуги 1-7 соответствуют к-л обрабатывающим, запоминающим или коммутирующим устройствам, осуществляющим обработку и передачу информации из А в В, для работы такой системы достаточно наличие одного пути передачи и обработки, то данный граф является графом надежности системы.
Для последовательно включенных элементов, отказы которых являются независимыми случайными событиями, то по аксиоме умножения вероятностей, вероятность безотказной работы запишется:
(1)где Рi – это вероятность безотказной работы i-от подсистемы.
Для параллельно включенных элементов при таких же условиях вероятность:
(2)где Рj – это вероятность безотказной работы j-от подсистемы.
(2) основано на том, что вероятность отказа системы с параллельной структурой сводится как произведение вероятностей отказа элементов.
Вероятность безотказной работы системы с последовательно-параллельной структурой наиболее удобно выразить постепенным упрощением ее схемы.
а)
б)
в)
г)
Заменим сначала параллельную подсистему 2 и 3 подсистемой 23 (рис б), тогда вероятность безотказной работы подсистемы 23 запишется Р23 = 1 – (1 - Р2)(1 - Р3).
Затем заменим последовательные подсистемы 1 и 23 и подсистемы 4 и 5, подсистемами 123 и 45: Р123 = Р2.Р23, Р45 = Р4.Р5… Р12345 = 1 – (1 – Р123)(1 – Р45), что соответствует вероятности безотказной работы системы.
Рассмотрим случай, когда имеется система, состоящая из последовательно-параллельных нагруженных подсистем. Допустим, что отказы подсистем независимы и распределены по экспоненциальной модели с одинаковым параметром l. Тогда, подставляя вероятность безотказной работы системы, получим:
выражение для среднего времени безотказной работы
Допущение: ИО резервированной подсистемы lрезер = 0. Допущение обосновано для механических, электрических объектов, встречающихся в ВС, которые в режиме ненагруженного резерва практически не отказывают. Методы анализа надежности резервированных систем с ненагруженным резервом основаны на сложении интервалов времени от включения до отказа основного и резервных элементов системы. Время безотказной работы системы это tCсостоящей из основной подсистемы и n-1 резервных подсистем запишется:
где ti– время до отказа i-от подсистемы.
Анализ надежности усложняется когда ti – СВ и необходимо найти функцию плотности распределения суммы случайных величин, т.е. решить задачу композиции функций в ПР слагаемых. В случае, когда поток отказов подсистем является пуассоновским, вероятность P(t,k) того, что за t возникает k отказов выражается по формуле Пуассона:
Сравнивая между собой методы резервирования с нагруженным и ненагруженным резервом можно сделать вывод, сто при прочих равных условиях, система с ненагруженным резервом надежнее. Однако при сравнении методов необходимо учитывать, что ненагруженный резерв в виде процессора или ЭВМ, в отличие от нагруженного требует некоторого дополнительного времени для загрузки в него необходимых данных. Кроме того, во многих случаях важно сохранять промежуточные результаты. В таких случаях часто применяют комбинированное резервирование, т.е. первая резервная подсистема работает в режиме нагруженного резерва, полностью дублируя информацию, а остальные резервные подсистемы ненагружены. В случае отказа основной системы или нагруженного резерва, включается один из ненагруженных резервов вместо отказавшего.
Встречаются структуры, когда резервирование имеет место, но его нельзя представить по последовательной или параллельной схеме, наиболее часто встречается скользящее резервирование, когда число резервов подсистем и число однотипных подсистем больше чем требуется для выполнения поставленной задачи,, причем каждая резервная подсистема может замещать отказавшую.
Пусть в системе имеется nосновных подсистем и mрезервных. Тогда вероятность безотказной работы системы:
р – вероятность безотказной работы подсистемы
С – число сочетаний
Рассмотрим два приближенных метода расчета таких систем: метод минимальных путей и метод минимальных сечений. Эти методы являются приближенными. Позволяют оценить действительное значение вероятности безотказной работы снизу и сверху.
Для формального описания введем логическую функцию F(x). Где логический вектор x = {x1,…xn} характеризует работоспособность элементов системы. Если xi = 1, то i-ый элемент (подсистема) – работоспособен, если xi = 0, то – неработоспособен. F(x) = 1, тогда система работоспособна. Определим в принятых обозначениях понятия минимальный путь и минимальное сечение.
Если F(x) = 1 и F(y) = 0 при любых y<x, то x = a - это и есть минимальный путь. Т.е. j-ый минимальный путь состоит из локально-минимальной совокупности Mj подсистем, необходимой для обеспечения безотказной работы системы, независимо от состояния остальных подсистем. В структуре системы имеется несколько минимальных путей. Характерным признаком минимального пути является то, что отказ хотя бы одной подсистемы пути влечет за собой отказ системы.
Для графа (стр. 13) укажем следующие минимальные пути: 12, 147, 1367, 567, 532, 5347, 5642.
Если F(x) = 0 и F(y) = 1 при любых y>x, то x = b - это минимальное сечение. Т.к. k-ое минимальное сечение состоит из минимальной совокупности подсистем Nk, одновременный отказ которых влечет за собой отказ системы, независимо от состояния отдельных подсистем. Характерной особенностью минимального сечения является то, что восстановление хотя бы одной подсистемы в минимальном сечении (при условии, что остальные подсистемы работают) влечет за собой восстановление системы. Минимальное сечение это: 15, 136, 1347, 5342, 246, 27.