Представление текстовой информации в компьютере
ЭВМ первых двух поколений могли обрабатывать только числовую информацию, полностью оправдывая свое название вычислительных машин. Лишь переход к третьему поколению принес изменения: к этому времени уже назрела настоятельная необходимость использования текстов.
С точки зрения ЭВМ текст состоит из отдельных символов. К числу символов принадлежат не только буквы (заглавные или строчные, латинские или русские), но и цифры, знаки препинания, спецсимволы типа "=", "(", "&" и т.п. и даже (обратите особое внимание!) пробелы между словами. Да, не удивляйтесь: пустое место в тексте тоже должно иметь свое обозначение.
Каждый символ хранится в виде двоичного кода, который является номером символа. Можно сказать, что компьютер имеет собственный алфавит, где весь набор символов строго упорядочен. Количество символов в алфавите также тесно связано с двоичным представлением и у всех ЭВМ равняется 256. Иными словами, каждый символ всегда кодируется 8 битами, т.е. занимаетровно один байт.
Как видите, хранится не начертание буквы, а ее номер. Именно по этому номеру воспроизводится вид символа на экране дисплея или на бумаге. Поскольку алфавиты в различных типах ЭВМ не полностью совпадают, при переносе с одной модели на другую может произойти превращение разумного текста в "абракадабру". Такой эффект иногда получается даже на одной машине в различных программных средах: например, русский текст, набранный в MS DOS, нельзя без специального преобразования прочитать в Windows. Остается утешать себя тем, что задача перекодировки текста из одной кодовой таблицы в другую довольно проста и при наличии программ машина сама великолепно с ней справляется.
Наиболее стабильное положение в алфавитах всех ЭВМ занимают латинские буквы, цифры и некоторые специальные знаки. Это связано с существованием международного стандарта ASCII (American Standard Code for Information Interchange - Американский стандартный код для обмена информацией). Русские же буквы не стандартизированы и могут иметь различную кодировку.
Желающие могут в качестве примера ознакомится с таблицей стандартной части алфавита ЭВМ - символы с шестнадцатеричными кодами с 20 до 7F.
Нельзя также пройти мимо еще одного интересного факта: каждый символ текста имеет свой числовой код, но не каждому коду соответствует отображаемый на экране символ. Речь идет о существовании так называемых УПРАВЛЯЮЩИХ КОДОВ, величина которых меньше шестнадцатеричного числа 20 (т.е. 32 в десятичной системе счисления). При получении этих кодов внешние устройства не изображают какого-либо символа, а выполняют те или иные управляющие действия. Так, код 07 вызывает подачу стандартного звукового сигнала, а код 0C - очистку экрана. Особую роль играют коды 0A (перевод строки, обозначаемый часто LF) и 0D (возврат каретки - CR). Первый вызывает перемещение в следующую строку без изменения позиции, а второй - на начало текущей строки. Таким образом, для перехода на начало новой строки требуются оба кода и в любом тексте эта "неразлучная пара" кодов хранится после каждой строки.
Обратим внимание читателя на то, что названия возврат каретки и перевод строки имеют историческое происхождение и связаны с устройством пишущей машинки.
Представление графической информации.
В отличии текстового представления информации, когда минимальной единицей является символ, при отображении графики картинка строится из отдельных элементов - ПИКСЕЛОВ (от английских слов PICture ELement, означающих "элемент картинки").
Очень часто пиксел совпадает с точкой дисплея, но это совсем необязательно: например, в некоторых видеорежимах 1 пиксел может состоять из 2 или 4 точек экрана.
Каждый пиксел характеризуется цветом. Как и вся остальная информация в ЭВМ, цвет кодируется числом. В зависимости от количества допустимых цветов, число двоичных разрядов на один пиксел будет различным.
Так, для черно-белой картинки закодировать цвет точки можно одним битом: 0 - черный, 1 - белый. Для случая 16 цветов требуется уже по 4 разряда на каждую точку, а для 256 цветов - 8, т.е. 1 байт.
Растр - прямоугольная сетка пикселей на экране.
Число цветов, воспроизводимых на экране дисплея (K), и число бит, отводимых в видеопамяти под каждый пиксель (N), связаны формулой:
K = 2 N.
Для того, чтобы наглядно представить себе, как хранится в памяти ЭВМ простейшее изображение, рассмотрим для примера белый квадратик на черном фоне размером 4 х 4. В черно-белом режиме это будет выглядеть наиболее компактно (сначала для наглядности приведен двоичный, а затем шестнадцатиричныйвид): |
В режиме 16-цветной графики это же самое изображение потребует памяти в 4 раза больше.
Наконец, при 256 цветах на каждую точку требуется уже по байту и наш квадратик разрастется еще вдвое.
Положение и форма графических примитивов задаются в системе графических координат, связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось Y - сверху вниз.Отрезок прямой линии однозначно определяется указанием координат его концов; окружность - координатами центра и радиусом; многоугольник - координатами его углов, закрашенная область - граниной линией и цветом закраски. | |
Таким образом, графическая информация, также как числовая и текстовая, в конечном счете заносится в память в виде двоичных чисел.
звук есть колебания среды.
Для их записи с целью последующего воспроизведения необходимо как можно точней сохранить форму кривой зависимости интенсивности звука от времени. При этом возникает одна очень важная и принципиальная трудность: звуковой сигнал непрерывен, а компьютер способен хранить в памяти только дискретные величины. Отсюда следует, что в процессе сохранения звуковой информации она должна быть "оцифрована", т.е. из аналоговой непрерывной формы переведена в цифровую дискретную. Данную функцию выполняет специальный блок, входящий в состав звуковой карты, который называется аналого-цифровой преобразователь – АЦП.
Каковы основные принципы работы АЦП?
Во-первых, он производит дискретизацию записываемого звукового сигнала по времени. Это означает, что измерение уровня интенсивности звука ведется не непрерывно, а, напротив, в определенные фиксированные моменты времени (удобнее, разумеется, через равные временные промежутки). Частоту, характеризующую периодичность измерения звукового сигнала принято называть частотой дискретизации. Вопрос о ее выборе далеко не праздный и ответ в значительной степени зависит от спектра сохраняемого сигнала: существует специальная теорема Найквиста, согласно которой частота "оцифровки" звука должна как минимум в 2 раза превышать максимальную частоту, входящую в состав спектра сигнала.