Модель защиты виртуальной памяти – каждый процесс выполняется в своей собственной виртуальной памяти, требуется MMU. У каждого процесса имеются свои собственные сегменты и, следовательно, своя таблица описателей. ОС несет ответственность за поддержку таблиц описателей. Адресуемое пространство может превышать размеры физической памяти, если используется страничная организация памяти совместно с подкачкой. Однако в системах реального времени подкачка обычно не применяется из-за ее непредсказуемости. Для решения этой проблемы доступная память разбивается на фиксированное число логических адресных пространств равного размера. Число одновременно выполняющихся процессов в системе становится ограниченным.
31. Физические принципы организации ввода/вывода в ОС.
Устройства ввода-вывода делятся на два типа: блок-ориентированные устройства и байт-ориентированные устройства. Блок-ориентированные устройства хранят информацию в блоках фиксированного размера, каждый из которых имеет свой собственный адрес. Самое распространенное блок-ориентированное устройство - диск. Байт-ориентированные устройства не адресуемы и не позволяют производить операцию поиска, они генерируют или потребляют последовательность байтов. Примерами являются терминалы, строчные принтеры, сетевые адаптеры. Однако некоторые внешние устройства не относятся ни к одному классу, например, часы, которые, с одной стороны, не адресуемы, а с другой стороны, не порождают потока байтов. Это устройство только выдает сигнал прерывания в некоторые моменты времени.
Внешнее устройство обычно состоит из механического и электронного компонента. Электронный компонент называется контроллером устройства или адаптером. Механический компонент представляет собственно устройство. Некоторые контроллеры могут управлять несколькими устройствами. Если интерфейс между контроллером и устройством стандартизован, то независимые производители могут выпускать совместимые как контроллеры, так и устройства.
Операционная система обычно имеет дело не с устройством, а с контроллером. Контроллер, как правило, выполняет простые функции, например, преобразует поток бит в блоки, состоящие из байт, и осуществляют контроль и исправление ошибок. Каждый контроллер имеет несколько регистров, которые используются для взаимодействия с центральным процессором. В некоторых компьютерах эти регистры являются частью физического адресного пространства. В таких компьютерах нет специальных операций ввода-вывода. В других компьютерах адреса регистров ввода-вывода, называемых часто портами, образуют собственное адресное пространство за счет введения специальных операций ввода-вывода (например, команд IN и OUT в процессорах i86).
ОС выполняет ввод-вывод, записывая команды в регистры контроллера. Например, контроллер гибкого диска IBM PC принимает 15 команд, таких как READ, WRITE, SEEK, FORMAT и т.д. Когда команда принята, процессор оставляет контроллер и занимается другой работой. При завершении команды контроллер организует прерывание для того, чтобы передать управление процессором операционной системе, которая должна проверить результаты операции. Процессор получает результаты и статус устройства, читая информацию из регистров контроллера.
32. Классификация устройств в/в. Контроллеры устройств в/в.
Классификация устройств ввода-вывода
В общем случае две категории – блочные и символьные
Блочное – хранит информацию в виде блоков фиксированного размера , каждый блок имеет адрес и может быть прочитан независимо от остальных.
Символьные – предоставляемый или принимаемый поток символов без блочной структуры, здесь нет адресации, следовательно нет операции поиска (например мышь).
Любое устройство ввода-вывода состоит из двух частей – механическая и электронная (контроллер).
Контроллер – микросхема, физически управляющая устройствами. Контроллер принимает команды ОС и дешифрует их для устройства. Интерфейс между контроллером и устройством – интерфейс низкого уровня, как правило к контроллеру может подключатся 1,2,4,8 устройств однотипных. Для связи с каждым контроллером существует определенное количество регистров (т.н. “управляющих”)
33. Сетевые операционные системы и операционные системы суперкомпьютеров.
Сетевые ОС: Сетевые и распределенные.
ОС, позволяющие пользователю работать в сети, называются сетевыми. Набор ОС отдельных компьютеров составляет сеть. Включают согласованный набор коммуникационных протоколов для взаимодействия процессов на различных компьютерах и для разделения ресурсов между пользователями сети. В сетевой ОС пользователь всегда знает, что имеет дело с сетевым ресурсом. В распределенных ОС сетевые ресурсы – это единая виртуальная машина.
Функциональные компоненты сетевой ОС: серверная часть – та часть, которая обеспечивает доступ к вашей системе.клиентская часть – средства запроса доступа к удаленным ресурсам и услугам.транспортное средствоФункции клиентской части: способность отличить запрос к удаленному файлу от локального.преобразование формата запроса к ресурсам, прием запросов от приложений на доступ в сети и получение ответов от серверной части своей и другой системы.Сетевая служба – совокупность клиентской и серверной частей ОС, представляет доступ к конкретному типу ресурса компьютера. Службы делятся на административные и пользовательские.Узлы в сети бывают одного из трех видов:одноранговый узел – совмещает функции клиента и сервераклиентсерверВ одноранговых сетях все узлы равны в возможности доступа друг к другу. Сети с выделенными серверами – ОС оптимизированы для работы в качестве сервера и клиента. Отличие серверных ОСподдержка мощных платформподдержка большого числа одновременно выполняемых процессов и соединений.наличие средств централизованного администрирования сети.более широкий набор сетевых служб ОС суперкомпьютеровФилософское определение – компьютер, мощность которого всего на порядок меньше, чем нужно для решения поставленных задач.Экономическое определение – система, цена которой выше 1-2 млн $.Для их ОС характерно:высокая степень отказоустойчивости.отсутствие функциональной избыточностиналичие специальных средств диагностики и мониторинга работы процессора и связей.