Смекни!
smekni.com

Фракталы (стр. 4 из 4)

Данная программа позволяет просмотреть изображения двадцати одного алгебраического и трёх геометрических фракталов. При запуске программы она автоматически предоставляет нам интерфейс алгебраических фракталов. Для переключения на геометрические Вам необходимо в строке меню нажать кнопку "Показать"->"Геометрические фракталы".

Прорисовка происходит на прямоугольной области на левой половине окна программы именуемой холстом.

В меню алгебраических фракталов имеются следующие органы управления и ввода параметров:

R - насыщенность красного цвета

G - насыщенность зелёного цвета

B - насыщенность синего цвета

Колличество иттераций - число повторений координат точки при выявлении её принадлежности определённой области (от этого зависит качество изображения)

Список возможных вариантов фракталов:

Прорисовать - кнопка прорисовки

Очистить - кнопка очистки

По умолчанию - исходные значения

Время прорисовки

При работе с геометрическими фракталами:

Серпинский - прорисовка треугольника Серпинского, справа параметр - число иттераций

Дракон Д. Пиано - прорисовка дракона Д. Пиано, справа параметр - число иттераций

Фейгенбаум - прорисовка дерева Фейгенбаума, внизу список параметров

Очистить - очистить.

Так же имеется возможность сохранения изображения в формате *. bmp. Для этого необходимо прорисовать фрактал (по желанию - увеличить), затем войти в меню - "Фаил"->"Сохранить", не указывая расширение, ввести имя фаила и нажать Enter.

При необходимости просмотра фрактальной структуры Вам необходимо навести указатель мыши на область холста, нажать на левую кнопку, а затем растянуть необходимую область движением вправо и отпустить кнопку мыши.


Рисунок 21. Интерфейс программы.

Влияние параметров.

При разработке данной программы учитывались не только требования заказчика, но так же были проведены не которые исследования. Были выявлены следующие закономерности и факты:

При увеличении числа итераций увеличивается качество изображения, но так же увеличивается и скорость прорисовки. Так же при увеличении фрактала с большим числом итераций мы можем видеть более наглядные изображения, и кратность возможного увеличения заметно возрастает.

Подбор цветовых коэффициентов очень сложная и кропотливая работа, требующая большого ресурса человеко-часов.

Время прорисовки так же зависит от выбранных функций. Так степенные функции прорисовываются гораздо быстрее, чем например степенные.

В ходе работы было создано немалое число фракталов, из которых были выбраны лучшие, путём визуального контроля. Формулы, по которым они прорисовываются, были выведены исключительно разработчиками и являются их частной собственностью.

Начальные значения переменных в функциях могут изменить вид фрактала так, что его оригинал визуально будет совсем не похож на клона. Такой принцип, например, применил Жюлиа.

Радиус окружности - эталон, на котором происходит генерация точек, - это важнейший параметр. Например, Фракталы, построенные на основе множества Мандельброта - Spider (i), отличаются только этим радиусом.

Начальные координаты прорисовки определяют полноту изображения на холсте. При их неправильной простановке фрактал может быть виден не полностью.

Многие параметры влияют на красоту фрактала. При его построении все параметры должны быть точно просчитаны и продуманы. Это залог качественного изображения.

Заключение

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Не только визуальными, но ещё и структура этого изображения отражает нашу жизнь. Взять, к примеру, ДНК, это всего лишь основа, одна итерация, а при повторении… появляется человек! И таких примеров много. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств и броуновского движения. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.