В современных системах формирования цифровых водяных знаков используется принцип встраивания метки, являющейся узкополосным сигналом, в широком диапазоне частот маркируемого изображения. Указанный метод реализуется при помощи двух различных алгоритмов и их возможных модификаций. В первом случае информация скрывается путем фазовой модуляции информационного сигнала (несущей) с псевдослучайной последовательностью чисел. Во втором - имеющийся диапазон частот делится на несколько каналов и передача производится между этими каналами. Относительно исходного изображения метка является некоторым дополнительным шумом, но так как шум в сигнале присутствует всегда, его незначительное возрастание за счет внедрения метки не дает заметных на глаз искажений. Кроме того, метка рассеивается по всему исходному изображению, в результате чего становится более устойчивой к вырезанию.
1.2 Встраивание сообщений в незначащие элементы контейнера
Цифровые изображения представляют собой матрицу пикселов. Пиксель – это единичный элемент изображения. Он имеет фиксированную
разрядность двоичного представления. Например, пиксели полутонового изображения кодируются 8 битами (значения яркости изменяются от 0 до 255).
Младший значащий бит (LSB) изображения несет в себе меньше всего информации. Известно, что человек обычно не способен заметить изменение в этом бите. Фактически, он является шумом. Поэтому его можно использовать для встраивания информации. Таким образом, для полутонового изображения объем встраиваемых данных может составлять 1/8 объема контейнера. Например, в изображение размером 512х512 можно встроить 32 килобайта информации. Если модифицировать два младших бита (что также почти незаметно), то можно скрытно передать вдвое больший объем данных.
Достоинства рассматриваемого метода заключаются в его простоте и сравнительно большом объеме встраиваемых данных. Однако, он имеет серьезные недостатки. Во-первых, скрытое сообщение легко разрушить. Во-вторых, не обеспечена секретность встраивания информации. Нарушителю точно известно местоположение всего ЦВЗ. Для преодоления последнего недостатка было предложено встраивать ЦВЗ не во все пикселы изображения, а лишь в некоторые из них, определяемые по псевдослучайному закону в соответствии с ключом, известному только законному пользователю. Пропускная способность при этом уменьшается.
Рассмотрим подробнее вопрос выбора пикселов изображения для встраивания в них скрытого сообщения.
В процессе работы отмечается неслучайный характер поведения младшего значащего бита изображений. Скрываемое сообщение не должно изменять статистики изображения. Для этого, в принципе возможно, располагая достаточно большим количеством незаполненных контейнеров, подыскать наиболее подходящий. Теоретически возможно найти контейнер, уже содержащий в себе наше сообщение при данном ключе. Тогда изменять вообще ничего не надо, и вскрыть факт передачи будет невозможно. Эту ситуацию можно сравнить с применением одноразового блокнота в криптографии. Метод выбора подходящего контейнера требует выполнения большого количества вычислений и обладает малой пропускной способностью.
Альтернативным подходом является моделирование характеристик поведения LSB. Встраиваемое сообщение будет в этом случае частично или полностью зависеть от контейнера. Процесс моделирования является вычислительно трудоемким, кроме того, его надо повторять для каждого контейнера. Главным недостатком этого метода является то, что процесс моделирования может быть повторен нарушителем, возможно обладающим большим вычислительным ресурсом, создающим лучшие модели, что приведет к обнаружению скрытого сообщения. Это противоречит требованию о независимости безопасности стегосистемы от вычислительной мощности сторон. Кроме того, для обеспечения скрытности, необходимо держать используемую модель шума в тайне. А как нам уже известно, нарушителю неизвестен должен быть лишь ключ.
В силу указанных трудностей на практике обычно ограничиваются поиском пикселов, модификация которых не вносит заметных искажений в изображение. Затем из этих пикселов в соответствии с ключом выбираются те, которые будут модифицироваться. Скрываемое сообщение шифруется с применением другого ключа. Этот этап может быть дополнен предварительной компрессией для уменьшения объема сообщения.
1.3 Стеганографические протоколы
Важное значение для достижения целей стеганографии имеют протоколы.Под протоколом понимается порядок действий, предпринимаемых двумя или более сторонами, предназначенный для решения определенной задачи. Можно разработать исключительно эффективный алгоритм скрытия информации, но из-за его неправильного применения не добиться своей цели. И протокол и алгоритм есть некоторая последовательность действий. Различие заключается в том, что в протокол должны быть обязательно вовлечены двое или более сторон. При этом предполагается, что участники принимают на себя обязательство следовать протоколу. Также как и алгоритм, протокол состоит из шагов. На каждом шаге протокола выполняются некоторые действия, которые могут заключаться, например, в производстве каких-то вычислений, или осуществлении некоторых действий.
Основные стеганографические протоколы:
· Стеганография с открытым ключом. Понятие «открытый ключ» означает, что для дешифровки сообщения используется другой ключ, чем при его шифровании. При этом один из ключей делается общедоступным, открытым. Криптографическая система с открытым ключом используется, например, при цифровой подписи. При этом сообщение подписывается закрытым ключом, и любой, имеющий соответствующий открытый ключ, может удостовериться в ее подлинности. При шифровании данных используют обратный порядок: сообщение подписывается открытым ключом, а прочитать его может лишь имеющий соответствующий закрытый ключ. Естественно, что из открытого ключа никакими способами нельзя получить закрытый ключ (в вычислительном смысле).
· Обнаружение ЦВЗ с нулевым знанием. Робастные ЦВЗ могут применяться в различных приложениях, соответственно, и требования к ним могут предъявляться различные. Можно выделить следующие категории требований к робастным ЦВЗ:
· ЦВЗ обнаруживается всеми желающими. В этом случае он служит для уведомления о собственнике защищаемого контента и для предотвращения непреднамеренного нарушения прав собственника.
· ЦВЗ обнаруживается, по крайней мере, одной стороной. В этом случае его использование связано с поиском нелегально распространяемых копий, например, в сети Интернет.
· ЦВЗ крайне трудно модифицировать или извлечь из контента. В этом случае ЦВЗ служит для аутентификации.
1.4 Практические вопросы встраивания данных
Часто используют следующий принцип встраивания данных. Пусть сигнал контейнера представлен последовательностью из n бит. Процесс скрытия информации начинается с определения бит контейнера, которые можно изменять без внесения заметных искажений - стегопути. Далее среди этих бит обычно в соответствии с ключом выбираются биты, заменяемые битами ЦВЗ.
Возможные способы внедрения в контейнер битов ЦВЗ.
1)Инверсия бита. Значения битов стегопути заменяются на противоположные. При этом «1» может соответствовать замена 0>1, «0» -замена 1>0.
2)Вставка бита. Перед битом стегопути вставляется бит ЦВЗ. При этом значение бита ЦВЗ должно быть противоположно значению бита контейнера.
3) Удаление бита. Выбираются пары «01» или «10» битов стегопути, соответствующие разным значениям бита ЦВЗ. Затем первый бит пары удаляется.
4)Использование бита-флага. При этом на то, что очередной бит контейнера (неизменяемый!) является битом ЦВЗ указывает инверсия предшествующего бита-флага.
5)Применение пороговых бит. Также как и в предыдущем методе используется бит-флаг. Однако, одному биту ЦВЗ соответствует несколько идущих следом за флагом бит (нечетное число). Если среди этих бит больше единиц, то бит ЦВЗ равен «1».
6)Использование табличных значений. Для определения бита ЦВЗ в предыдущем методе, фактически, использовалась проверка на четность. С тем же успехом можно было бы применять и любое другое отображение множества бит в 1 бит, либо находить его значение по таблице.
7)Динамически изменяемая таблица. Метод тот же, что и в предыдущем случае, но таблица изменяется на каждом шаге. Например, использованное значение из таблицы может быть заменено на случайное.
8)Косвенная динамическая таблица. Так как табличные значения (биты контейнера) знает и кодер и декодер, то их можно не передавать.
1.5 Практические оценки стойкости стегосистем.
Теоретические оценки стойкости стегосистем, например, теоретико-информационные, предполагают, что скрывающий информацию и нарушитель обладают неограниченными вычислительными ресурсами для построения стегосистем и, соответственно, стегоатак на них, придерживаются оптимальных стратегий скрывающего преобразования и стегоанализа, располагают бесконечным временем для передачи и обнару-жения скрываемых сообщений и т.д. Разумеется, такие идеальные модели скрывающего информацию и нарушителя неприменимы для реалий практических стегосистем. Поэтому рассмотрим известные к настоящему времени практические оценки стойкости некоторых стегосистем, реально используемых для скрытия информации.
В последние годы появились программно реализованные стегосистемы, обеспечивающие скрытие информации в цифровых видео- и аудиофайлах. Такие программы свободно распространяются, легко устанавливаются на персональные компьютеры, сопрягаются с современными информационными технологиями и не требуют специальной подготовки при их использовании. Они обеспечивают встраивание текста в изображение, изображение в изображение, текста в аудиосигнал и т.п. В современных телекоммуникационных сетях типа Интернет передаются очень большие потоки мультимедийных сообщений, которые потециально могут быть использованы для скрытия информации. Одной из наиболее актуальных и сложных проблем цифровой стеганографии является выявление факта такого скрытия. В реальных условиях наиболее типичным видом атаки нарушителя является атака только со стего, так как истинный контейнер ему обычно неизвестен. В этих условиях обнаружение скрытого сообщения возможно на основе выявления нарушений зависимостей, присущих естественным контейнерам. Практический стегоанализ цифровых стегосистем является очень молодой наукой, однако в его арсенале уже имеется ряд методов, позволяющих с высокой вероятностью обнаруживать факт наличия стегоканала, образованных некоторыми предложенными к настоящему времени стегосистемами. Среди методов практического стегоанализа существуют визуальная атака и ряд статистических атак. Эти атаки первоначально были предложены для выявления факта внедрения скрываемой информации в младшие разряды элементов контейнера, которые принято называть наименее значимыми битами (НЗБ).