Смекни!
smekni.com

Экспертная система прогнозирования успеваемости студентов в ВУЗах (стр. 1 из 12)

ВВЕДЕНИЕ

Проблемы прогнозирования результатов сессии студентов в высшем учебном заведении в современных рыночных условиях являются актуальными по множеству причин. Во-первых, подготовка квалифицированных специалистов – это одна из главных задач любого образовательного учреждения. Во-вторых, управление процессом обучения студентов в условиях влияния множества внешних факторов является сложной задачей, как в организационном, так и социально-экономическом плане, требующем системного подхода и разработки новых методов и моделей управления.

Проблема построения модели, экспертной системы прогнозирования результатов сессии на основании анализа текущей успеваемости, заключается в сложности входящих в модель данных. При исследовании поведения студентов учтены, как количественны показатели, так и качественные, можно сказать, что исходные данные сложно формализируемые.

Целью работы является, построение продукционной модели экспертной системы прогнозирования результатов сессии, на основании анализа текущей успеваемости, и ее реализация в языке логического программирования VisualProlog. Объектом исследования является процесс получения образования в высшем учебном заведении. Предмет исследования - методы построения базы знаний в экспертных системах, а именно продукционная модель.

При построении экспертной системы прогнозирования результатов сессии, на основе текущей успеваемости, выделяют следующие задачи исследования:

1. Сбор информации о объекте исследования, а именно о процессе обучения и системе оценивания студентов всех курсов.

2. Изучение методов построения базы знаний и выбор наилучшего.

3. Представление продукционной модели построения базы знаний.

4. Изучение механизмов логического вывода.

5. Реализация экспертной системы в языке логического программирования VisualProlog

Для данной экспертной системы была выбрана продукционная модель построения базы знаний, потому что она являются наиболее наглядным средствами представления знаний. Она близка к логическим моделям, что позволяет организовывать на ее базе эффективные процедуры вывода, и в то же время более наглядно (чем классические логические модели) отражает знания. Продукционная модель привлекает разработчиков своей наглядностью, высокой модульностью, легкостью внесения дополнений и изменений и простотой логического вывода.

В результате исследования будет создана структура продукционной модели построения баз знаний в экспертной системе прогнозирования результатов сдачи сессии на основе текущей успеваемости.


РАЗДЕЛ 1. ЭКСПЕРТНЫЕ СИСТЕМЫ

В середине семидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название экспертные системы. Цель исследований по экспертным системам состоит в разработке программ (устройств), которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. В большинстве случаев экспертные системы решают трудно формализуемые задачи или задачи, не имеющие алгоритмического решения.

Экспертная система - программно-техническое средство, позволяющее пользователю в диалоговом режиме получать от компьютера консультационную помощь в конкретной предметной области, где сконцентрированы опыт и знания людей-экспертов (специалистов в данной области).

Экспертные системы – программы для компьютера, которые могут воспроизводить процесс решения проблемы человеком-экспертом.[1]

Экспертная система - программа, которая использует знания специалистов (экспертов) о некоторой конкретной узкоспециализированной предметной области и в пределах этой области способна принимать решения на уровне эксперта-профессионала. [2]

Экспертные системы - прикладные программы ИИ, в которых база знаний представляет собой формализованные эмпирические знания высококвалифицированных специалистов (экспертов) в какой-либо узкой предметной области.[3]

Экспертная система - программа для компьютера, которая оперирует со знаниями в определенной предметной области с целью выработки рекомендаций или решения проблем.[3]

В основе функционирования ЭС лежит использование знаний, а манипулирование ими осуществляется на базе эвристических правил, сформулированных экспертами. ЭС выдают советы, проводят анализ, выполняют классификацию, дают консультации и ставят диагноз. Они ориентированы на решение задач, обычно требующих проведения экспертизы человеком-специалистом. В отличие от машинных программ, использующий процедурный анализ, ЭС решают задачи в узкой предметной области (конкретной области экспертизы) на основе дедуктивных рассуждений. Главное достоинство экспертных систем - возможность накапливать знания, сохранять их длительное время, обновлять и тем самым обеспечивать относительную независимость конкретной организации от наличия в ней квалифицированных специалистов.

1.1 Классификация и виды экспертных систем

Для классификации ЭС [5] используют следующие признаки:

1. Способ формирования решения;

2. Способ учета временного признака;

3. Вид используемых данных;

4. Число используемых источников решения знаний;

По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.

В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.

По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.

ЭС могут создаваться с использованием одного или нескольких источников знаний.

1.2 Структура экспертной системы

Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.1):

· решателя (интерпретатора);

· рабочей памяти (РП), называемой также базой данных (БД);

· базы знаний (БЗ);

· компонентов приобретения знаний;

· объяснительного компонента;

· диалогового компонента.

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

Рис. 1.1. «Структура экспертной системы»

1.3 Базы знаний и модели представления знаний

База знаний - важная компонента экспертной системы, она предназначена для хранения долгосрочных данных, описывающих рассматриваемую предметную область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

В качестве предметной области выбирается узкая (специальная) прикладная область. Далее для создания ЭС в выбранной области собираются факты и правила, которые помещаются в базу знаний вместе с механизмами вывода и упрощения. В отличие от всех остальных компонент ЭС, база знаний - "переменная " часть системы, которая может пополняться и модифицироваться инженерами знаний и опыта использование ЭС, между консультациями (а в некоторых системах и в процессе консультации).

Существует несколько способов представления знаний в ЭС, однако общим для всех них является то, что знания представлены в символьной форме (элементарными компонентами представления знаний являются тексты, списки и другие символьные структуры). Тем самым, в ЭС реализуется принцип символьной природы рассуждений, который заключается в том, что процесс рассуждения представляется как последовательность символьных преобразований.

Существуют динамические и статические базы знаний. Динамическая база знаний изменяется со временем. Ее содержимое зависит и от состояния окружающей. Новые факты, добавляемые в базу знаний, являются результатом вывода, который состоит в применении правил к имеющимся фактам. В системах с монотонным выводом факты, хранимые в базе знаний, статичны, то есть не изменяются в процессе решения задачи. В системах с немонотонным выводом допускается изменение или удаление фактов из базы знаний.

Одной из наиболее важных проблем, характерных для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком.