Смекни!
smekni.com

Возникновение и перспективы создания искусственного интеллекта (стр. 6 из 7)

Кроме языков программирования стали активно развиваться различные инстру­ментальные системы поддержки разработок интеллектуальных систем, даю­щие программистам возможность автоматизировать свою деятельность при создании новых интеллектуальных программ и систем [44].

Исследования в Советском Союзе по созданию инструментальной системы ПРИЗ (Э.Х.Тыугу и его коллеги), первая версия которой появилась еще в начале 70-х годов, намного опередили соответствующие разработки в других странах [45,46].

Можно указать несколько областей практического приложения интеллекту­альных систем, созданных в первой половине 80-х годов.

1. Традиционные системы управления. Уже говорилось о развитии в СССР с конца 60-х годов методов ситуационного управления (Д.А.Поспелов, Ю.И.Клыков, Л.С.Загадская и др. [27]). Эти методы использовались для решения обычных задач управления, когда другие методы не давали решения. В ситуационных моделях использовались знания об объекте управления и методах управления им, а также применялись такие традиционные для ИИ приемы, как описание ситуаций, складывающихся на объекте управления на ограниченном и формализованном естественном языке, использование псевдофизических логик для оценки и преобразования ситуаций, обучение при накоплении информа­ции в памяти системы, планирование целесообразных действий по управлению и использованию информации от технологов и управленцев. Существует ряд областей управления, в которых применение методов ИИ дает боль­шое продвижение вперед [47]. Среди этих областей наиболее перспективной является создание роботизированных производств с гибкой технологией [41], с постепенным повышением интеллектуального уровня роботов и разработкой новых технологий для безлюдных производств. Работы в этой области развернулись в 80-е годы в большинстве развитых стран и с их успешным завершением связываются огромные надежды на подъем уровня производства. Еще одна область – это "распределенные интеллектуальные системы" или даже "распре­деленный интеллект". Эта область охватывает сложные задачи, в решении которых участвуют многие люди, взаимно связанные друг с другом через общую информа­цию или управление (примером задачи такого типа может служить отраслевое планирование). Применение при решении подобных задач таких средств ИИ, как база знаний или планировщик-решатель, может привести, как показали первые опыты использования подобных систем [48, 49], к весьма значительному эффекту.

2. Автоматизация научной и инженерной деятельности. С конца 70-х годов весьма стремительно развиваются и внедряются в практику интеллектуальные пакеты прикладных программ (ИППП) [49]. Эти системы позволяют специали­сту, работающему в определенной области, гибко и с затратой минимальных усилий использовать богатые библиотеки разнообразных прикладных программ, предназначенных для решения задач в этой области. В ИППП имеется система общения с пользователем, позволяющая ему общаться с программой на естественном профес­сиональном языке, модель предметной области (своеобразная база знаний) и мони­тор-планировщик, осуществляющий взаимодействие пользователя с библиотекой программ. Система ПРИЗ, о которой мы уже упоминали выше, может рассматри­ваться как ИППП, если она настроена на решение задач в определенной проблем­ной области.

Расчетно-логические системы [49] – еще один вид интеллектуальных систем, используемый в исследовательской деятельности. Они являются дальнейшим разви­тием ИППП и предоставляют пользователю еще более богатые возможности по работе с моделью предметной области и пакетом прикладных программ. Как правило, в таких системах имеется хорошо развитая графическая система общения, делающая наглядными и легко изменяемыми чертежи и схемы, хранящиеся в памяти системы. В СССР под руководством Г.С.Поспелова создано несколько систем подобного типа, предназначенных для отраслевого планирования и проекти­рования сложных технических систем (первая половина 80-х годов).

Обучающие системы (тьюторы) становятся в 80-е годы все более и более популярными. Идея машинного обучения не нова. Но первый этап развития таких систем проходил вне сферы ИИ, что не позволило авторам обучающих систем добиться заметного успеха. С началом внедрения в эту область идей и методов искусственного интеллекта возник перелом. Применения в обучаю­щих системах развитых баз знаний и гибких планировщиков-решателей сделало эти системы эффективными. И сейчас уже пользователь, впервые садящийся за пульт персональной ЭВМ с незнакомой ему программной системой, в которой он собира­ется работать, практически всегда начинает с обучения правилам работы с помощью тьютора, являющегося неотъемлемой частью системы. Кроме обучения решению задач на ЭВМ, обучающие системы активно работают в различных тренажерах и при обучении в высших учебных заведениях и в школе.

Экспертные системы (ЭС) – наиболее известный тип современных промыш­ленных интеллектуальных систем [49]. Принципиальное отличие ЭС от других систем ИИ – это наличие системы обоснования. Задачей системы обоснования является формирование пользователю, если он этого требует, совокупности объяс­нений о том, как система получила то решение, которое она выдала пользователю. Подобная функция в предшествующих системах не реализовывалась. Цель системы обоснования состоит в повышении доверия к результатам, получаемым ЭС.

В целом ЭС бывают двух типов. ЭС первого типа близки к тьюторам. Они используются для помощи специалистам, решающим нужную им задачу, но не обладающим всеми необходимыми для этого знаниями. Таким специалистом может быть врач, впервые столкнувшийся с неизвестным ему заболеванием, или инженер-эксплуата­ционник, не знающий что делать в наблюдаемой в данный момент ситуации. В этих случаях ЭС, хранящая в своей памяти богатый запас знаний, почерпнутый из печатной продукции или от экспертов-специалистов, в режиме диалога с пользова­телем пытается оказать ему посильную помощь в постановке диагноза, планировании его деятельности, принятии решений при имеющемся множестве альтернатив и т.п. ЭС второго типа предназначены для работы со специалистами, ведущими научные исследования. Они являются для них вспомогательным инструментом, предназначенным для совместной работы в диалоговом режиме. Такие ЭС могут быстро производить нужные расчеты, создавать геометрические зрительные образы конструируемых объектов, быстро искать информацию в базе по запросу пользова­теля и т.п.

Рынок ЭС и число областей, в которых они с успехом используются, непрерыв­но возрастает [50, 51].

3. Производство ЭВМ новых поколений. В начале 80-х годов произошел всплеск в области конструирования ЭВМ. Известный проект "ЭВМ пятого поколе­ния – путь к прогрессу", выдвинутый Японией, вызвал широкий отклик во всех развитых странах, ибо декларировал переход на новый уровень переработки инфор­мации и решения задач. ЭВМ пятого поколения должны быть такими, чтобы пользователь мог их применять с такой же легкостью, с какой он пользуется другими приборами, носящими название бытовых. Достижение этого уровня гаран­тирует массовое внедрение ЭВМ в повседневную деятельность людей [52].

Так искусственный интеллект, подобно тому, как это ранее произошло с вычислительной техникой, стал в середине 80-х годов одним из ведущих направле­ний научно-технического прогресса.

Литература

1. Мельчук И.А., Равич Р.Д. Автоматический перевод 1949-1963: Критико-библиграфический справочник. – М.: ВИНИТИ, 1967.

2. Апресян Ю.Д., Богуславский И.М., Иомдин Л.Л. и др. Лингвистическое обеспечение в системе автоматического перевода третьего поколения. – М.: Научный Совет по комплексной проблеме "Кибернетика" при Президиуме АН СССР, 1978.

3. Михайлов А.И., Черный А.И., Гиляревский Р.С. Основы информатики. – М.: Наука, 1968.

4. Леонов Б.П. О методах автоматического реферирования (США 1958-1974 гг.)// Научно-техническая информация, сер.2. – 1975. – №6. – С. 16-20.

5. Пащенко Н.А., Кнорина Л.В., Молчанова Т.В. и др. Проблемы автоматизации индексирования и реферирования// Итоги науки и техники. Сер. Информатика. – М.: ВИНИТИ, 1983. – Т.7. – С. 7-164.

6. Севбо И.П. Структура связного текста и автоматизации реферирования. – М.: Наука, 1969.

7. Вычислительные машины и мышление. – М.: Мир, 1967.

8. Ефимов Е.И. Решатели интеллектуальных задач. – М.: Наука, 1982.

9. Маслов С.Ю. Теория дедуктивных систем и ее применение. – М.: Радио и связь, 1986.

10. Чен Ч., Ли Р. Математическая логика и автоматическое доказательство теорем: Пер. с англ. – М.: Наука, 1983.

11. Бонгард М.М. Проблема узнавания. – М.: Наука, 1967.

12. Поспелов Д.А. Игры и автоматы. – М.-Л.: Энергия, 1966.

13. Шеннон К. Работы по теории информации и кибернетике: Пер. с англ. – М.: Изд-во иностр. лит., 1963.

14. Ботвинник М.Н. О кибернетической цели игры. – М.: Сов. радио, 1975.

15. Зарипов Р.Х. Кибернетика и музыка. – М.: Наука, 1971.

16. Зарипов Р.Х. Машинный поиск вариантов при моделировании творческого процесса. – М.: Наука, 1983.

17. Гаазе-Рапопорт М.Г., Поспелов Д.А., Семенова Е.Т. Порождение структур волшебных сказок. – М.: Научный Совет по комплексной проблеме "Кибернетика" при Президиуме АН СССР, 1980.

18. Franke H. Computer Graphiсs – Computer Art. – Berlin, Heidelberg, New-York, Tokyo: Springer Verlag, 1985.

19. Слэйгл Дж. Искусственный интеллект. – М.: Мир, 1973.

20. Хант Э. Искусственный интеллект: Пер. с англ. – М.: Мир, 1978.

21. Эндрю А. Искусственный интеллект: Пер. с англ. – М.: Мир, 1985.